Sequential n-connectedness and infinite deformations of n-loops

IF 0.7 4区 数学 Q2 MATHEMATICS
Jeremy Brazas
{"title":"Sequential n-connectedness and infinite deformations of n-loops","authors":"Jeremy Brazas","doi":"10.1007/s40062-024-00360-7","DOIUrl":null,"url":null,"abstract":"<div><p>A space <i>X</i> is “sequentially <i>n</i>-connected” at <span>\\(x\\in X\\)</span> if for every <span>\\(0\\leqslant k\\leqslant n\\)</span> and sequence of <i>k</i>-loops <span>\\(f_1,f_2,f_3,\\ldots :S^k\\rightarrow X\\)</span> that converges toward the point <i>x</i>, the maps <span>\\(f_m\\)</span> contract by a sequence of null-homotopies that converge toward <i>x</i>. Unlike standard local contractibility conditions, the sequential <i>n</i>-connectedness property is closed under forming infinite products and infinite shrinking wedges. We use this property, in conjunction with the Whitney Covering Lemma, to construct homotopies that simultaneously perform infinite deformations of <i>n</i>-loops and, ultimately, allow us to continuously deform arbitrary <i>n</i>-loops into maps with simpler forms. As a direct application, we extend the computation of the <i>n</i>-th homotopy group of a shrinking wedge of certain <span>\\((n-1)\\)</span>-connected spaces due to K. Eda and K. Kawamura.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"20 1","pages":"1 - 22"},"PeriodicalIF":0.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-024-00360-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A space X is “sequentially n-connected” at \(x\in X\) if for every \(0\leqslant k\leqslant n\) and sequence of k-loops \(f_1,f_2,f_3,\ldots :S^k\rightarrow X\) that converges toward the point x, the maps \(f_m\) contract by a sequence of null-homotopies that converge toward x. Unlike standard local contractibility conditions, the sequential n-connectedness property is closed under forming infinite products and infinite shrinking wedges. We use this property, in conjunction with the Whitney Covering Lemma, to construct homotopies that simultaneously perform infinite deformations of n-loops and, ultimately, allow us to continuously deform arbitrary n-loops into maps with simpler forms. As a direct application, we extend the computation of the n-th homotopy group of a shrinking wedge of certain \((n-1)\)-connected spaces due to K. Eda and K. Kawamura.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信