Reproducible Learning of Gaussian Graphical Models via Graphical Lasso Multiple Data Splitting

IF 0.8 3区 数学 Q2 MATHEMATICS
Kang Hu, Danning Li, Binghui Liu
{"title":"Reproducible Learning of Gaussian Graphical Models via Graphical Lasso Multiple Data Splitting","authors":"Kang Hu,&nbsp;Danning Li,&nbsp;Binghui Liu","doi":"10.1007/s10114-025-3324-1","DOIUrl":null,"url":null,"abstract":"<div><p>Gaussian graphical models (GGMs) are widely used as intuitive and efficient tools for data analysis in several application domains. To address the reproducibility issue of structure learning of a GGM, it is essential to control the false discovery rate (FDR) of the estimated edge set of the graph in terms of the graphical model. Hence, in recent years, the problem of GGM estimation with FDR control is receiving more and more attention. In this paper, we propose a new GGM estimation method by implementing multiple data splitting. Instead of using the node-by-node regressions to estimate each row of the precision matrix, we suggest directly estimating the entire precision matrix using the graphical Lasso in the multiple data splitting, and our calculation speed is <i>p</i> times faster than the previous. We show that the proposed method can asymptotically control FDR, and the proposed method has significant advantages in computational efficiency. Finally, we demonstrate the usefulness of the proposed method through a real data analysis.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 2","pages":"553 - 568"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-3324-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Gaussian graphical models (GGMs) are widely used as intuitive and efficient tools for data analysis in several application domains. To address the reproducibility issue of structure learning of a GGM, it is essential to control the false discovery rate (FDR) of the estimated edge set of the graph in terms of the graphical model. Hence, in recent years, the problem of GGM estimation with FDR control is receiving more and more attention. In this paper, we propose a new GGM estimation method by implementing multiple data splitting. Instead of using the node-by-node regressions to estimate each row of the precision matrix, we suggest directly estimating the entire precision matrix using the graphical Lasso in the multiple data splitting, and our calculation speed is p times faster than the previous. We show that the proposed method can asymptotically control FDR, and the proposed method has significant advantages in computational efficiency. Finally, we demonstrate the usefulness of the proposed method through a real data analysis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信