Non-Gaussian Process Dynamical Models

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yaman Kındap;Simon Godsill
{"title":"Non-Gaussian Process Dynamical Models","authors":"Yaman Kındap;Simon Godsill","doi":"10.1109/OJSP.2025.3534690","DOIUrl":null,"url":null,"abstract":"Probabilistic dynamical models used in applications in tracking and prediction are typically assumed to be Gaussian noise driven motions since well-known inference algorithms can be applied to these models. However, in many real world examples deviations from Gaussianity are expected to appear, e.g., rapid changes in speed or direction, which cannot be reflected using processes with a smooth mean response. In this work, we introduce the non-Gaussian process (NGP) dynamical model which allow for straightforward modelling of heavy-tailed, non-Gaussian behaviours while retaining a tractable conditional Gaussian process (GP) structure through an infinite mixture of non-homogeneous GPs representation. We present two novel inference methodologies for these new models based on the conditionally Gaussian formulation of NGPs which are suitable for both MCMC and marginalised particle filtering algorithms. The results are demonstrated on synthetically generated data sets.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"6 ","pages":"213-221"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10854574","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10854574/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Probabilistic dynamical models used in applications in tracking and prediction are typically assumed to be Gaussian noise driven motions since well-known inference algorithms can be applied to these models. However, in many real world examples deviations from Gaussianity are expected to appear, e.g., rapid changes in speed or direction, which cannot be reflected using processes with a smooth mean response. In this work, we introduce the non-Gaussian process (NGP) dynamical model which allow for straightforward modelling of heavy-tailed, non-Gaussian behaviours while retaining a tractable conditional Gaussian process (GP) structure through an infinite mixture of non-homogeneous GPs representation. We present two novel inference methodologies for these new models based on the conditionally Gaussian formulation of NGPs which are suitable for both MCMC and marginalised particle filtering algorithms. The results are demonstrated on synthetically generated data sets.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信