{"title":"Approximating average bounded-angle minimum spanning trees","authors":"Ahmad Biniaz , Prosenjit Bose , Patrick Devaney","doi":"10.1016/j.comgeo.2025.102172","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by the problem of orienting directional antennas in wireless communication networks, we study average bounded-angle minimum spanning trees. Let <em>P</em> be a set of points in the plane and let <em>α</em> be an angle. An <em>α</em>-spanning tree (<em>α</em>-ST) of <em>P</em> is a spanning tree of the complete Euclidean graph induced by <em>P</em> such that all edges incident to each point <span><math><mi>p</mi><mo>∈</mo><mi>P</mi></math></span> lie in a fixed wedge of angle <em>α</em> with apex <em>p</em>. An <em>α</em>-minimum spanning tree (<em>α</em>-MST) of P is an <em>α</em>-ST with minimum total edge length.</div><div>An average-<em>α</em>-spanning tree (denoted by <span><math><mover><mrow><mi>α</mi></mrow><mo>‾</mo></mover></math></span>-ST) is a spanning tree with the relaxed condition that incident edges to all points lie in wedges with average angle <em>α</em>. An average-<em>α</em>-minimum spanning tree (<span><math><mover><mrow><mi>α</mi></mrow><mo>‾</mo></mover></math></span>-MST) is an <span><math><mover><mrow><mi>α</mi></mrow><mo>‾</mo></mover></math></span>-ST with minimum total edge length.</div><div>Let <span><math><mi>A</mi><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow></math></span> be the smallest ratio of the length of the <span><math><mover><mrow><mi>α</mi></mrow><mo>‾</mo></mover></math></span>-MST to the length of the standard MST, over all sets of points in the plane. We investigate bounds for <span><math><mi>A</mi><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow></math></span>. For <span><math><mi>α</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>, Biniaz, Bose, Lubiw, and Maheshwari (Algorithmica 2022) showed that <span><math><mfrac><mrow><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>≤</mo><mi>A</mi><mrow><mo>(</mo><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. We improve the upper bound and show that <span><math><mi>A</mi><mrow><mo>(</mo><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mn>13</mn></mrow><mrow><mn>9</mn></mrow></mfrac></math></span>. We also study this for <span><math><mi>α</mi><mo>=</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and prove that <span><math><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>≤</mo><mi>A</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow><mo>≤</mo><mn>4</mn></math></span>.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"128 ","pages":"Article 102172"},"PeriodicalIF":0.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772125000100","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by the problem of orienting directional antennas in wireless communication networks, we study average bounded-angle minimum spanning trees. Let P be a set of points in the plane and let α be an angle. An α-spanning tree (α-ST) of P is a spanning tree of the complete Euclidean graph induced by P such that all edges incident to each point lie in a fixed wedge of angle α with apex p. An α-minimum spanning tree (α-MST) of P is an α-ST with minimum total edge length.
An average-α-spanning tree (denoted by -ST) is a spanning tree with the relaxed condition that incident edges to all points lie in wedges with average angle α. An average-α-minimum spanning tree (-MST) is an -ST with minimum total edge length.
Let be the smallest ratio of the length of the -MST to the length of the standard MST, over all sets of points in the plane. We investigate bounds for . For , Biniaz, Bose, Lubiw, and Maheshwari (Algorithmica 2022) showed that . We improve the upper bound and show that . We also study this for and prove that .
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.