Approximating average bounded-angle minimum spanning trees

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Ahmad Biniaz , Prosenjit Bose , Patrick Devaney
{"title":"Approximating average bounded-angle minimum spanning trees","authors":"Ahmad Biniaz ,&nbsp;Prosenjit Bose ,&nbsp;Patrick Devaney","doi":"10.1016/j.comgeo.2025.102172","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by the problem of orienting directional antennas in wireless communication networks, we study average bounded-angle minimum spanning trees. Let <em>P</em> be a set of points in the plane and let <em>α</em> be an angle. An <em>α</em>-spanning tree (<em>α</em>-ST) of <em>P</em> is a spanning tree of the complete Euclidean graph induced by <em>P</em> such that all edges incident to each point <span><math><mi>p</mi><mo>∈</mo><mi>P</mi></math></span> lie in a fixed wedge of angle <em>α</em> with apex <em>p</em>. An <em>α</em>-minimum spanning tree (<em>α</em>-MST) of P is an <em>α</em>-ST with minimum total edge length.</div><div>An average-<em>α</em>-spanning tree (denoted by <span><math><mover><mrow><mi>α</mi></mrow><mo>‾</mo></mover></math></span>-ST) is a spanning tree with the relaxed condition that incident edges to all points lie in wedges with average angle <em>α</em>. An average-<em>α</em>-minimum spanning tree (<span><math><mover><mrow><mi>α</mi></mrow><mo>‾</mo></mover></math></span>-MST) is an <span><math><mover><mrow><mi>α</mi></mrow><mo>‾</mo></mover></math></span>-ST with minimum total edge length.</div><div>Let <span><math><mi>A</mi><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow></math></span> be the smallest ratio of the length of the <span><math><mover><mrow><mi>α</mi></mrow><mo>‾</mo></mover></math></span>-MST to the length of the standard MST, over all sets of points in the plane. We investigate bounds for <span><math><mi>A</mi><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow></math></span>. For <span><math><mi>α</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>, Biniaz, Bose, Lubiw, and Maheshwari (Algorithmica 2022) showed that <span><math><mfrac><mrow><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>≤</mo><mi>A</mi><mrow><mo>(</mo><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. We improve the upper bound and show that <span><math><mi>A</mi><mrow><mo>(</mo><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mn>13</mn></mrow><mrow><mn>9</mn></mrow></mfrac></math></span>. We also study this for <span><math><mi>α</mi><mo>=</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and prove that <span><math><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>≤</mo><mi>A</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow><mo>≤</mo><mn>4</mn></math></span>.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"128 ","pages":"Article 102172"},"PeriodicalIF":0.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772125000100","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by the problem of orienting directional antennas in wireless communication networks, we study average bounded-angle minimum spanning trees. Let P be a set of points in the plane and let α be an angle. An α-spanning tree (α-ST) of P is a spanning tree of the complete Euclidean graph induced by P such that all edges incident to each point pP lie in a fixed wedge of angle α with apex p. An α-minimum spanning tree (α-MST) of P is an α-ST with minimum total edge length.
An average-α-spanning tree (denoted by α-ST) is a spanning tree with the relaxed condition that incident edges to all points lie in wedges with average angle α. An average-α-minimum spanning tree (α-MST) is an α-ST with minimum total edge length.
Let A(α) be the smallest ratio of the length of the α-MST to the length of the standard MST, over all sets of points in the plane. We investigate bounds for A(α). For α=2π3, Biniaz, Bose, Lubiw, and Maheshwari (Algorithmica 2022) showed that 43A(2π3)32. We improve the upper bound and show that A(2π3)139. We also study this for α=π2 and prove that 32A(π2)4.
近似平均有界角最小生成树
针对无线通信网络中定向天线的定位问题,研究了平均有界角最小生成树。设P是平面上点的集合,设α是一个角。P的α-生成树(α- st)是由P生成的完全欧氏图的生成树,使得与每个点P∈P相关的所有边都位于以顶点P为角α的固定楔中。P的α-最小生成树(α- mst)是总边长度最小的α- st。平均-α-生成树(用α -ST表示)是一种松弛条件,即所有点的入射边都在平均角为α的楔形中。平均-α-最小生成树(α -MST)是具有最小总边长度的α -ST。设A(α)是在平面上所有点的集合上,α -MST的长度与标准MST的长度之比最小。我们研究了A(α)的界。对于α=2π3, Biniaz, Bose, Lubiw和Maheshwari (Algorithmica 2022)证明43≤A(2π3)≤32。我们改进了上界,证明了A(2π3)≤139。我们也对α=π2进行了研究,证明了32≤A(π2)≤4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信