A predictive analytics approach with Bayesian-optimized gentle boosting ensemble models for diabetes diagnosis

Behnaz Motamedi, Balázs Villányi
{"title":"A predictive analytics approach with Bayesian-optimized gentle boosting ensemble models for diabetes diagnosis","authors":"Behnaz Motamedi,&nbsp;Balázs Villányi","doi":"10.1016/j.cmpbup.2025.100184","DOIUrl":null,"url":null,"abstract":"<div><div>Effective disease management necessitates the accurate and timely prediction of lung cancer and diabetes. Machine learning (ML) based models have garnered attention in the realm of predictive healthcare, with ensemble methods, in particular, bolstering algorithms to improve classification performance. Nevertheless, enhancing boosting algorithms to achieve superior predictive accuracy continues to be a difficult task. This study proposes a Bayesian-Optimized GentleBoost Ensemble (BOGBEnsemble) to improve classification performance for diabetes prediction (DiP) and lung cancer prediction (LCP). Two Kaggle datasets—a diabetes dataset from multiple healthcare providers and a Survey Lung Cancer dataset from existent medical records—are utilized. Data preprocessing involves outlier removal, min–max normalization, class balancing, and Pearson correlation-based feature selection. The GentleBoost classifier is optimized using Bayesian hyperparameter tuning, focusing on learning rate and the number of weak learners, and is validated using 10-fold cross-validation. BOGBEnsemble is evaluated in comparison to leading models, such as Random Forest (RF), Adaptive Boosting (AdaBoost), Logistic Boosting (LogitBoost), Random Undersampling Boosting (RUSBoost), conventional GentleBoost, and Multi-Layer Perceptron (MLP) architectures. The DiP-BOGBEnsemble achieves a 99.26% accuracy, 98.94% precision, 99.60% recall, 99.26% F1-score, 99.46% F2-score, 98.51% MCC, 98.51 Kappa, 0.0041 FOR, and 22,606.75 DOR. The LC-BOGBEnsemble achieves a 96.51% accuracy, 97.83% precision, 94.76% recall, 96.28% F1-score, 95.36% F2-score, MCC of 93.03%, Kappa of 92.99, FOR of 0.0462, and DOR of 932.15. This study highlights the potential of BOGBEnsemble as a clinically viable tool for early disease detection and decision support, paving the way for more reliable and personalized healthcare strategies.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"7 ","pages":"Article 100184"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine update","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666990025000084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Effective disease management necessitates the accurate and timely prediction of lung cancer and diabetes. Machine learning (ML) based models have garnered attention in the realm of predictive healthcare, with ensemble methods, in particular, bolstering algorithms to improve classification performance. Nevertheless, enhancing boosting algorithms to achieve superior predictive accuracy continues to be a difficult task. This study proposes a Bayesian-Optimized GentleBoost Ensemble (BOGBEnsemble) to improve classification performance for diabetes prediction (DiP) and lung cancer prediction (LCP). Two Kaggle datasets—a diabetes dataset from multiple healthcare providers and a Survey Lung Cancer dataset from existent medical records—are utilized. Data preprocessing involves outlier removal, min–max normalization, class balancing, and Pearson correlation-based feature selection. The GentleBoost classifier is optimized using Bayesian hyperparameter tuning, focusing on learning rate and the number of weak learners, and is validated using 10-fold cross-validation. BOGBEnsemble is evaluated in comparison to leading models, such as Random Forest (RF), Adaptive Boosting (AdaBoost), Logistic Boosting (LogitBoost), Random Undersampling Boosting (RUSBoost), conventional GentleBoost, and Multi-Layer Perceptron (MLP) architectures. The DiP-BOGBEnsemble achieves a 99.26% accuracy, 98.94% precision, 99.60% recall, 99.26% F1-score, 99.46% F2-score, 98.51% MCC, 98.51 Kappa, 0.0041 FOR, and 22,606.75 DOR. The LC-BOGBEnsemble achieves a 96.51% accuracy, 97.83% precision, 94.76% recall, 96.28% F1-score, 95.36% F2-score, MCC of 93.03%, Kappa of 92.99, FOR of 0.0462, and DOR of 932.15. This study highlights the potential of BOGBEnsemble as a clinically viable tool for early disease detection and decision support, paving the way for more reliable and personalized healthcare strategies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信