Synergy between processive cellulases in Ruminoccocus albus

IF 3.4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Alem Storani , Alberto A. Iglesias, Sergio A. Guerrero
{"title":"Synergy between processive cellulases in Ruminoccocus albus","authors":"Alem Storani ,&nbsp;Alberto A. Iglesias,&nbsp;Sergio A. Guerrero","doi":"10.1016/j.enzmictec.2025.110610","DOIUrl":null,"url":null,"abstract":"<div><div>Endoglucanases (EGs), cellobiohydrolases (CBHs), and β-glucosidases are essential components in enzymatic degradation of cellulose. We analyzed the glycosyl hydrolases from families GH5 and GH48 from <em>Ruminococcus albus</em> 8 (<em>Ral</em>Cel5G and <em>Ral</em>Cel48A). Both enzymes feature a catalytic motif and a carbohydrate binding domain from family 37 (CBM37). <em>Ral</em>Cel5G also exhibited a second CBM37 with lower similarity. As a result, <em>Ral</em>Cel5G showed higher binding affinity toward insoluble substrates and broader recognition capacity. Kinetic characterization using different cellulosic substrates and reaction product analysis confirmed <em>Ral</em>Cel5G as a processive EG while <em>Ral</em>Cel48A is a CBH. Interestingly, we found a synergistic effect on their activity at a low EG to CBH ratio, despite the processive activity of <em>Ral</em>Cel5G. Furthermore, the lignocellulose degradation capacity was improved by supplementing the cellulases with hemicellulase <em>Ral</em>Xyn10A. These results provide valuable information about the interaction between processive EG and conventional CBH, necessary for the rational design of enzyme cocktails for optimized biomass processing.</div></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"186 ","pages":"Article 110610"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022925000304","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Endoglucanases (EGs), cellobiohydrolases (CBHs), and β-glucosidases are essential components in enzymatic degradation of cellulose. We analyzed the glycosyl hydrolases from families GH5 and GH48 from Ruminococcus albus 8 (RalCel5G and RalCel48A). Both enzymes feature a catalytic motif and a carbohydrate binding domain from family 37 (CBM37). RalCel5G also exhibited a second CBM37 with lower similarity. As a result, RalCel5G showed higher binding affinity toward insoluble substrates and broader recognition capacity. Kinetic characterization using different cellulosic substrates and reaction product analysis confirmed RalCel5G as a processive EG while RalCel48A is a CBH. Interestingly, we found a synergistic effect on their activity at a low EG to CBH ratio, despite the processive activity of RalCel5G. Furthermore, the lignocellulose degradation capacity was improved by supplementing the cellulases with hemicellulase RalXyn10A. These results provide valuable information about the interaction between processive EG and conventional CBH, necessary for the rational design of enzyme cocktails for optimized biomass processing.
褐色瘤菌加工纤维素酶的协同作用
内切葡聚糖酶(EGs)、纤维素生物水解酶(CBHs)和β-葡萄糖苷酶是纤维素酶降解的重要组成部分。我们分析了来自白色瘤球菌8 (RalCel5G和RalCel48A)的GH5和GH48家族的糖基水解酶。这两种酶都具有催化基序和来自家族37的碳水化合物结合域(CBM37)。RalCel5G也展示了第二个相似性较低的CBM37。因此,RalCel5G对不溶性底物具有更高的结合亲和力和更广泛的识别能力。使用不同纤维素底物和反应产物分析的动力学表征证实RalCel5G是一个过程EG,而RalCel48A是一个CBH。有趣的是,我们发现尽管RalCel5G具有进展性活性,但在低EG / CBH比下,它们的活性存在协同效应。此外,添加半纤维素酶RalXyn10A可提高纤维素酶对木质纤维素的降解能力。这些结果为过程EG和常规CBH之间的相互作用提供了有价值的信息,为合理设计优化生物质加工的酶鸡尾酒提供了必要的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Enzyme and Microbial Technology
Enzyme and Microbial Technology 生物-生物工程与应用微生物
CiteScore
7.60
自引率
5.90%
发文量
142
审稿时长
38 days
期刊介绍: Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells. We especially encourage submissions on: Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology New Biotechnological Approaches in Genomics, Proteomics and Metabolomics Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信