{"title":"Cholecystokinin - portrayal of an unfolding peptide messenger system","authors":"Jens F. Rehfeld","doi":"10.1016/j.peptides.2025.171369","DOIUrl":null,"url":null,"abstract":"<div><div>This review describes how the classic gut hormone, cholecystokinin (CCK), should be comprehended in 2025. In the early physiological tradition of studying gastrointestinal hormones, the hormones were named after the function that lead to their discovery. Hence, in 1928, the hormonal factor in the upper gut that regulated gallbladder contraction was called cholecystokinin. In 1968, Viktor Mutt and Erik Jorpes identified the porcine structure of this factor as an O-sulfated and carboxyamidated peptide of 33 amino acid residues (CCK-33). Its C-terminal bioactive heptapeptide amide turned out to be homologous to that of the antral hormone, gastrin. The structure allowed <em>in vitro</em> synthesis of peptide fragments for physiological studies and for production of CCK-antibodies for immunoassays and immunohistochemistry. Today, these tools have revealed CCK to be highly complex: CCK is a heterogenous, multifunctional peptide messenger system, widely expressed both in and outside the gut. Thus, the CCK gene encodes six different bioactive peptides (CCK-83, −58, −33, −22, −8, and −5) that are expressed in a cell-specific manner in O-sulfated and non-sulfated forms. Moreover, CCK peptides are not only hormones. They are also potent neurotransmitters, paracrine growth and satiety factors, anti-inflammatory cytokines, incretins, potential fertility factors and useful tumor-markers. Moreover, CCK has a phylogenetic history of nearly 600 million years. Particular interest has been given to the neuroscience of CCK, because CCK is the predominant peptide transmitter in the brain, expressed in amounts that surpass any other neuropeptide. Vice versa, the brain is the main production site of CCK in mammals.</div></div>","PeriodicalId":19765,"journal":{"name":"Peptides","volume":"186 ","pages":"Article 171369"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peptides","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196978125000300","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This review describes how the classic gut hormone, cholecystokinin (CCK), should be comprehended in 2025. In the early physiological tradition of studying gastrointestinal hormones, the hormones were named after the function that lead to their discovery. Hence, in 1928, the hormonal factor in the upper gut that regulated gallbladder contraction was called cholecystokinin. In 1968, Viktor Mutt and Erik Jorpes identified the porcine structure of this factor as an O-sulfated and carboxyamidated peptide of 33 amino acid residues (CCK-33). Its C-terminal bioactive heptapeptide amide turned out to be homologous to that of the antral hormone, gastrin. The structure allowed in vitro synthesis of peptide fragments for physiological studies and for production of CCK-antibodies for immunoassays and immunohistochemistry. Today, these tools have revealed CCK to be highly complex: CCK is a heterogenous, multifunctional peptide messenger system, widely expressed both in and outside the gut. Thus, the CCK gene encodes six different bioactive peptides (CCK-83, −58, −33, −22, −8, and −5) that are expressed in a cell-specific manner in O-sulfated and non-sulfated forms. Moreover, CCK peptides are not only hormones. They are also potent neurotransmitters, paracrine growth and satiety factors, anti-inflammatory cytokines, incretins, potential fertility factors and useful tumor-markers. Moreover, CCK has a phylogenetic history of nearly 600 million years. Particular interest has been given to the neuroscience of CCK, because CCK is the predominant peptide transmitter in the brain, expressed in amounts that surpass any other neuropeptide. Vice versa, the brain is the main production site of CCK in mammals.
期刊介绍:
Peptides is an international journal presenting original contributions on the biochemistry, physiology and pharmacology of biological active peptides, as well as their functions that relate to gastroenterology, endocrinology, and behavioral effects.
Peptides emphasizes all aspects of high profile peptide research in mammals and non-mammalian vertebrates. Special consideration can be given to plants and invertebrates. Submission of articles with clinical relevance is particularly encouraged.