Unsupervised generation of tradable topic indices through textual analysis

Q1 Mathematics
Marcel Lee , Alan Spark
{"title":"Unsupervised generation of tradable topic indices through textual analysis","authors":"Marcel Lee ,&nbsp;Alan Spark","doi":"10.1016/j.jfds.2025.100149","DOIUrl":null,"url":null,"abstract":"<div><div>Stock returns are moved by many risk factors. Thematic stock indices try to represent these factors, but are limited by the fact that risk factors are not directly observable. This paper introduces a method to uncover hidden risk factors through text analysis. It applies the dynamic variant of the <em>Latent Dirichlet Allocation</em> (LDA) model to annual and quarterly reports to find a topic distribution for each stock. This is then interpreted as the risk factor partition and transformed into a standard normal basis which corresponds to pure risk factors. The weights indicate the proportions necessary to combine the equities into tradable topic indices. The need for human intervention is minimized by determining the optimal parameters automatically.</div></div>","PeriodicalId":36340,"journal":{"name":"Journal of Finance and Data Science","volume":"11 ","pages":"Article 100149"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Finance and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405918825000017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Stock returns are moved by many risk factors. Thematic stock indices try to represent these factors, but are limited by the fact that risk factors are not directly observable. This paper introduces a method to uncover hidden risk factors through text analysis. It applies the dynamic variant of the Latent Dirichlet Allocation (LDA) model to annual and quarterly reports to find a topic distribution for each stock. This is then interpreted as the risk factor partition and transformed into a standard normal basis which corresponds to pure risk factors. The weights indicate the proportions necessary to combine the equities into tradable topic indices. The need for human intervention is minimized by determining the optimal parameters automatically.

Abstract Image

基于文本分析的交易话题指数的无监督生成
股票收益受许多风险因素的影响。主题股票指数试图反映这些因素,但由于风险因素无法直接观察到,因此受到限制。本文介绍了一种通过文本分析发现潜在风险因素的方法。将潜狄利克雷分配(Latent Dirichlet Allocation, LDA)模型的动态变体应用于年度报告和季度报告中,以找到每个股票的主题分布。然后将其解释为风险因素划分,并将其转化为与纯风险因素相对应的标准正常基。权重表示将股票合并为可交易主题指数所需的比例。通过自动确定最优参数,最大限度地减少了人为干预的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Finance and Data Science
Journal of Finance and Data Science Mathematics-Statistics and Probability
CiteScore
3.90
自引率
0.00%
发文量
15
审稿时长
30 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信