Kinetic model for dark energy—dark matter interaction: Scenario for the hubble tension

IF 5 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Giovanni Montani , Nakia Carlevaro , Luis A. Escamilla , Eleonora Di Valentino
{"title":"Kinetic model for dark energy—dark matter interaction: Scenario for the hubble tension","authors":"Giovanni Montani ,&nbsp;Nakia Carlevaro ,&nbsp;Luis A. Escamilla ,&nbsp;Eleonora Di Valentino","doi":"10.1016/j.dark.2025.101848","DOIUrl":null,"url":null,"abstract":"<div><div>We analyze a model for Dark Energy - Dark Matter interaction, based on a decaying process of the former into the latter. The dynamical equations are constructed following a kinetic formulation, which separates the interacting fluctuations from an equilibrium distribution of both species. The emerging dynamical picture consists of coupled equations, which are specialized in the case of a Dark Energy equation of state parameter; we deal with a modified Lambda Cold Dark Matter (<span><math><mi>Λ</mi></math></span>CDM) model, which is investigated versus a possible interpretation of the Hubble tension. Using an optimized set of the model’s free parameters, it can be shown that the obtained Hubble parameter can, in principle, address the tension. We then use the most recent datasets from late Universe sources and compressed information from the Cosmic Microwave Background data to constrain the free parameters and compare the addressed scenario to the standard <span><math><mi>Λ</mi></math></span>CDM model. The study outlines how our proposal is preferred by the data in all cases, based on fit quality, while also alleviating the tension.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"48 ","pages":"Article 101848"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686425000433","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze a model for Dark Energy - Dark Matter interaction, based on a decaying process of the former into the latter. The dynamical equations are constructed following a kinetic formulation, which separates the interacting fluctuations from an equilibrium distribution of both species. The emerging dynamical picture consists of coupled equations, which are specialized in the case of a Dark Energy equation of state parameter; we deal with a modified Lambda Cold Dark Matter (ΛCDM) model, which is investigated versus a possible interpretation of the Hubble tension. Using an optimized set of the model’s free parameters, it can be shown that the obtained Hubble parameter can, in principle, address the tension. We then use the most recent datasets from late Universe sources and compressed information from the Cosmic Microwave Background data to constrain the free parameters and compare the addressed scenario to the standard ΛCDM model. The study outlines how our proposal is preferred by the data in all cases, based on fit quality, while also alleviating the tension.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of the Dark Universe
Physics of the Dark Universe ASTRONOMY & ASTROPHYSICS-
CiteScore
9.60
自引率
7.30%
发文量
118
审稿时长
61 days
期刊介绍: Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact. The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信