Xuyang Wu , Zhanju Lin , Fujun Niu , Xingwen Fan , Minghao Liu , Chunqing Li , Yunhu Shang
{"title":"Frost heave evaluation and prediction of high-speed railway subgrade with coarse filler in high altitude seasonal frozen region, northwest China","authors":"Xuyang Wu , Zhanju Lin , Fujun Niu , Xingwen Fan , Minghao Liu , Chunqing Li , Yunhu Shang","doi":"10.1016/j.trgeo.2025.101520","DOIUrl":null,"url":null,"abstract":"<div><div>The subgrade frost heave problem in high altitude seasonal frozen regions is influenced by extreme climatic conditions, geological factors, subgrade structure, and other external variables. Consequently, controlling the frost heave issue becomes challenging. Based on 8 years field monitoring of Lanzhou-Xinjiang high-speed railway (LXHR), the engineering effectiveness of current subgrade anti-frost heave measures in seasonal frozen regions is comprehensively evaluated, and long-term frost heave of subgrade is predicted. The results demonstrate that Geological conditions exert a significant influence on both subgrade frost heave and frozen depth, and the specific manifestations of frost heave are as follows: intermountain basin > Gobi desert > diluvial plain, while the frozen depths are follows: diluvial plain > Gobi desert ≈ intermountain basin. The frost heave in the middle and upper layer of the subgrade (above 1.5 m) constitutes approximately 80 %–87.5 % of the total frost heave. Considering the cumulative increase in subgrade frost heave over time, the subgrade with coarse particle material replacement, and the “two cloth and one film” technique may not be conducive to long-term stability. It is predicted that after 30 years of operation, the subgrade antifreeze layer may transition from being non-sensitive of frost heave to becoming sensitive.</div></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"51 ","pages":"Article 101520"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221439122500039X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The subgrade frost heave problem in high altitude seasonal frozen regions is influenced by extreme climatic conditions, geological factors, subgrade structure, and other external variables. Consequently, controlling the frost heave issue becomes challenging. Based on 8 years field monitoring of Lanzhou-Xinjiang high-speed railway (LXHR), the engineering effectiveness of current subgrade anti-frost heave measures in seasonal frozen regions is comprehensively evaluated, and long-term frost heave of subgrade is predicted. The results demonstrate that Geological conditions exert a significant influence on both subgrade frost heave and frozen depth, and the specific manifestations of frost heave are as follows: intermountain basin > Gobi desert > diluvial plain, while the frozen depths are follows: diluvial plain > Gobi desert ≈ intermountain basin. The frost heave in the middle and upper layer of the subgrade (above 1.5 m) constitutes approximately 80 %–87.5 % of the total frost heave. Considering the cumulative increase in subgrade frost heave over time, the subgrade with coarse particle material replacement, and the “two cloth and one film” technique may not be conducive to long-term stability. It is predicted that after 30 years of operation, the subgrade antifreeze layer may transition from being non-sensitive of frost heave to becoming sensitive.
期刊介绍:
Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.