Assessing the accuracy of ChatGPT in interpreting blood gas analysis results ChatGPT-4 in blood gas analysis

IF 5 2区 医学 Q1 ANESTHESIOLOGY
Engin İhsan Turan , Abdurrahman Engin Baydemir , Anıl Berkay Balıtatlı , Ayça Sultan Şahin
{"title":"Assessing the accuracy of ChatGPT in interpreting blood gas analysis results ChatGPT-4 in blood gas analysis","authors":"Engin İhsan Turan ,&nbsp;Abdurrahman Engin Baydemir ,&nbsp;Anıl Berkay Balıtatlı ,&nbsp;Ayça Sultan Şahin","doi":"10.1016/j.jclinane.2025.111787","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Arterial blood gas (ABG) analysis is a critical component of patient management in intensive care units (ICUs), operating rooms, and general wards, providing essential information on acid-base balance, oxygenation, and metabolic status. Interpretation requires a high level of expertise, potentially leading to variability in accuracy. This study explores the feasibility and accuracy of ChatGPT-4, an AI-based model, in interpreting ABG results compared to experienced anesthesiologists.</div></div><div><h3>Methods</h3><div>This prospective observational study, approved by the institutional ethics board, included 400 ABG samples from ICU patients, anonymized and assessed by ChatGPT-4. The model analyzed parameters including acid-base status, oxygenation, hemoglobin levels, and metabolic markers, and provided both diagnostic and treatment recommendations. Two anesthesiologists, trained in ABG interpretation, independently evaluated the model's predictions to determine accuracy in potential diagnoses and treatment.</div></div><div><h3>Results</h3><div>ChatGPT-4 achieved high accuracy across most ABG parameters, with 100 % accuracy for pH, oxygenation, sodium, and chloride. Hemoglobin accuracy was 92.5 %, while bilirubin interpretation showed limitations at 72.5 %. In several cases, the model recommended unnecessary bicarbonate treatment, suggesting an area for improvement in clinical judgment for acid-base balance management. The model's overall performance was statistically significant across most parameters (<em>p</em> &lt; 0.05).</div></div><div><h3>Discussion</h3><div>ChatGPT-4 demonstrated potential as a supplementary tool for ABG interpretation in high-demand clinical settings, supporting rapid, reliable decision-making. However, the model's limitations in interpreting complex metabolic markers highlight the need for clinician oversight. Future refinements should focus on enhancing AI training for nuanced metabolic interpretation, particularly for markers like bilirubin, to ensure safe and effective application across diverse clinical contexts.</div></div>","PeriodicalId":15506,"journal":{"name":"Journal of Clinical Anesthesia","volume":"102 ","pages":"Article 111787"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Anesthesia","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952818025000479","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Arterial blood gas (ABG) analysis is a critical component of patient management in intensive care units (ICUs), operating rooms, and general wards, providing essential information on acid-base balance, oxygenation, and metabolic status. Interpretation requires a high level of expertise, potentially leading to variability in accuracy. This study explores the feasibility and accuracy of ChatGPT-4, an AI-based model, in interpreting ABG results compared to experienced anesthesiologists.

Methods

This prospective observational study, approved by the institutional ethics board, included 400 ABG samples from ICU patients, anonymized and assessed by ChatGPT-4. The model analyzed parameters including acid-base status, oxygenation, hemoglobin levels, and metabolic markers, and provided both diagnostic and treatment recommendations. Two anesthesiologists, trained in ABG interpretation, independently evaluated the model's predictions to determine accuracy in potential diagnoses and treatment.

Results

ChatGPT-4 achieved high accuracy across most ABG parameters, with 100 % accuracy for pH, oxygenation, sodium, and chloride. Hemoglobin accuracy was 92.5 %, while bilirubin interpretation showed limitations at 72.5 %. In several cases, the model recommended unnecessary bicarbonate treatment, suggesting an area for improvement in clinical judgment for acid-base balance management. The model's overall performance was statistically significant across most parameters (p < 0.05).

Discussion

ChatGPT-4 demonstrated potential as a supplementary tool for ABG interpretation in high-demand clinical settings, supporting rapid, reliable decision-making. However, the model's limitations in interpreting complex metabolic markers highlight the need for clinician oversight. Future refinements should focus on enhancing AI training for nuanced metabolic interpretation, particularly for markers like bilirubin, to ensure safe and effective application across diverse clinical contexts.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.40
自引率
4.50%
发文量
346
审稿时长
23 days
期刊介绍: The Journal of Clinical Anesthesia (JCA) addresses all aspects of anesthesia practice, including anesthetic administration, pharmacokinetics, preoperative and postoperative considerations, coexisting disease and other complicating factors, cost issues, and similar concerns anesthesiologists contend with daily. Exceptionally high standards of presentation and accuracy are maintained. The core of the journal is original contributions on subjects relevant to clinical practice, and rigorously peer-reviewed. Highly respected international experts have joined together to form the Editorial Board, sharing their years of experience and clinical expertise. Specialized section editors cover the various subspecialties within the field. To keep your practical clinical skills current, the journal bridges the gap between the laboratory and the clinical practice of anesthesiology and critical care to clarify how new insights can improve daily practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信