{"title":"VS-PINN: A fast and efficient training of physics-informed neural networks using variable-scaling methods for solving PDEs with stiff behavior","authors":"Seungchan Ko, Sanghyeon Park","doi":"10.1016/j.jcp.2025.113860","DOIUrl":null,"url":null,"abstract":"<div><div>Physics-informed neural networks (PINNs) have recently emerged as a promising way to compute the solutions of partial differential equations (PDEs) using deep neural networks. However, despite their significant success in various fields, it remains unclear in many aspects how to effectively train PINNs if the solutions of PDEs exhibit stiff behaviors or high frequencies. In this paper, we propose a new method for training PINNs using variable-scaling techniques. This method is simple and it can be applied to a wide range of problems including PDEs with rapidly-varying solutions. Throughout various numerical experiments, we will demonstrate the effectiveness of the proposed method for these problems and confirm that it can significantly improve the training efficiency and performance of PINNs. Furthermore, based on the analysis of the neural tangent kernel (NTK), we will provide theoretical evidence for this phenomenon and show that our methods can indeed improve the performance of PINNs.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"529 ","pages":"Article 113860"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125001433","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Physics-informed neural networks (PINNs) have recently emerged as a promising way to compute the solutions of partial differential equations (PDEs) using deep neural networks. However, despite their significant success in various fields, it remains unclear in many aspects how to effectively train PINNs if the solutions of PDEs exhibit stiff behaviors or high frequencies. In this paper, we propose a new method for training PINNs using variable-scaling techniques. This method is simple and it can be applied to a wide range of problems including PDEs with rapidly-varying solutions. Throughout various numerical experiments, we will demonstrate the effectiveness of the proposed method for these problems and confirm that it can significantly improve the training efficiency and performance of PINNs. Furthermore, based on the analysis of the neural tangent kernel (NTK), we will provide theoretical evidence for this phenomenon and show that our methods can indeed improve the performance of PINNs.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.