Large language models-powered clinical decision support: enhancing or replacing human expertise?

IF 4.4 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jia Li, Zichun Zhou, Han Lyu, Zhenchang Wang
{"title":"Large language models-powered clinical decision support: enhancing or replacing human expertise?","authors":"Jia Li,&nbsp;Zichun Zhou,&nbsp;Han Lyu,&nbsp;Zhenchang Wang","doi":"10.1016/j.imed.2025.01.001","DOIUrl":null,"url":null,"abstract":"<div><div>This editorial presents an optimistic yet cautious perspective on the development, deployment, and regulation of large language models (LLMs) in the field of medicine. It is essential to strike a balance between embracing the benefits of artificial intelligence-driven solutions and preserving the human touch that is vital for providing compassionate care. The exponential growth of medical data has paved the way for the integration of LLMs into healthcare, offering unprecedented opportunities to enhance clinical decision-making and alleviate physicians' workloads. Recently, LLMs have exhibited remarkable potential across various clinical scenarios, including streamlining diagnostic processes, optimizing radiology reports, and providing personalized treatment recommendations. However, the implementation of LLMs in healthcare is not without its challenges. Issues such as the scarcity of high-quality annotated data, privacy concerns, and the risk of generating misleading or overconfident information are significant hurdles that must be addressed. Moreover, while LLMs can replace certain basic tasks traditionally performed by humans, it is crucial to recognize that senior clinicians play an irreplaceable role in complex decision-making and providing emotional support to patients. By harnessing the power of LLMs to augment human capabilities while maintaining essential human elements within healthcare, we might shape a future where artificial intelligence and human intelligence coexist harmoniously. Prioritizing ethical development and deployment for artificial intelligence, empowering healthcare professionals, and safeguarding patient privacy will be key to realizing the full potential of LLMs in revolutionizing healthcare delivery. Through ongoing research, collaboration, and adaptation, responsible integration of LLMs holds promise for elevating both quality and accessibility globally, ultimately creating a more efficient, personalized, and patient-centric healthcare system.</div></div>","PeriodicalId":73400,"journal":{"name":"Intelligent medicine","volume":"5 1","pages":"Pages 1-4"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667102625000014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This editorial presents an optimistic yet cautious perspective on the development, deployment, and regulation of large language models (LLMs) in the field of medicine. It is essential to strike a balance between embracing the benefits of artificial intelligence-driven solutions and preserving the human touch that is vital for providing compassionate care. The exponential growth of medical data has paved the way for the integration of LLMs into healthcare, offering unprecedented opportunities to enhance clinical decision-making and alleviate physicians' workloads. Recently, LLMs have exhibited remarkable potential across various clinical scenarios, including streamlining diagnostic processes, optimizing radiology reports, and providing personalized treatment recommendations. However, the implementation of LLMs in healthcare is not without its challenges. Issues such as the scarcity of high-quality annotated data, privacy concerns, and the risk of generating misleading or overconfident information are significant hurdles that must be addressed. Moreover, while LLMs can replace certain basic tasks traditionally performed by humans, it is crucial to recognize that senior clinicians play an irreplaceable role in complex decision-making and providing emotional support to patients. By harnessing the power of LLMs to augment human capabilities while maintaining essential human elements within healthcare, we might shape a future where artificial intelligence and human intelligence coexist harmoniously. Prioritizing ethical development and deployment for artificial intelligence, empowering healthcare professionals, and safeguarding patient privacy will be key to realizing the full potential of LLMs in revolutionizing healthcare delivery. Through ongoing research, collaboration, and adaptation, responsible integration of LLMs holds promise for elevating both quality and accessibility globally, ultimately creating a more efficient, personalized, and patient-centric healthcare system.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intelligent medicine
Intelligent medicine Surgery, Radiology and Imaging, Artificial Intelligence, Biomedical Engineering
CiteScore
5.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信