Hope L. Ianiri, Pamela L. Campbell, Amy Gartman, Nancy G. Prouty
{"title":"Characterizing sedimentary organic carbon in a hydrothermal spreading center, the Escanaba Trough","authors":"Hope L. Ianiri, Pamela L. Campbell, Amy Gartman, Nancy G. Prouty","doi":"10.1016/j.chemgeo.2025.122679","DOIUrl":null,"url":null,"abstract":"<div><div>Sediments in critical marine mineral environments are of wide importance due to their preservation of both marine minerals and organic carbon (OC) stocks. However, OC storage and cycling is often overlooked in mineral system studies. This work characterizes sedimentary OC within the Escanaba Trough, a hydrothermal sulfide system off the coast of northern California. By utilizing ROV-based push coring, we collected sediments near and far from high temperature, low temperature, and inactive vents. We applied a multipronged organic geochemical approach, measuring bulk sediment, OC fractions of varying labilities, and biomarkers to tease apart the storage, source, and cycling of OC within this complex system. In contrast to past work indicating a primarily terrestrial source to deeper, Pleistocene sediments, our results suggest a primarily marine source in surface sediments at least 50 m away from active venting. Near active venting, we see evidence of locally produced chemosynthetic OC in addition to the background marine source. This chemosynthetic OC appears to be rapidly remineralized and supports more complex deep-sea food webs compared to hemipelagic sites. Still, the greatest contribution of labile OC was observed at inactive vent sites, which we suggest is due to hydrothermal fluid alteration of more labile OC at actively venting sites. Depending on fluid temperature, hydrothermally altered OC is either preserved in the sediments as petroleum or migrated with fluid flow. Considering inactive sites are those most likely to be targeted by potential mining, we suggest additional studies could verify if these results apply at other sedimented seafloor massive sulfide systems.</div></div>","PeriodicalId":9847,"journal":{"name":"Chemical Geology","volume":"679 ","pages":"Article 122679"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009254125000695","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Sediments in critical marine mineral environments are of wide importance due to their preservation of both marine minerals and organic carbon (OC) stocks. However, OC storage and cycling is often overlooked in mineral system studies. This work characterizes sedimentary OC within the Escanaba Trough, a hydrothermal sulfide system off the coast of northern California. By utilizing ROV-based push coring, we collected sediments near and far from high temperature, low temperature, and inactive vents. We applied a multipronged organic geochemical approach, measuring bulk sediment, OC fractions of varying labilities, and biomarkers to tease apart the storage, source, and cycling of OC within this complex system. In contrast to past work indicating a primarily terrestrial source to deeper, Pleistocene sediments, our results suggest a primarily marine source in surface sediments at least 50 m away from active venting. Near active venting, we see evidence of locally produced chemosynthetic OC in addition to the background marine source. This chemosynthetic OC appears to be rapidly remineralized and supports more complex deep-sea food webs compared to hemipelagic sites. Still, the greatest contribution of labile OC was observed at inactive vent sites, which we suggest is due to hydrothermal fluid alteration of more labile OC at actively venting sites. Depending on fluid temperature, hydrothermally altered OC is either preserved in the sediments as petroleum or migrated with fluid flow. Considering inactive sites are those most likely to be targeted by potential mining, we suggest additional studies could verify if these results apply at other sedimented seafloor massive sulfide systems.
期刊介绍:
Chemical Geology is an international journal that publishes original research papers on isotopic and elemental geochemistry, geochronology and cosmochemistry.
The Journal focuses on chemical processes in igneous, metamorphic, and sedimentary petrology, low- and high-temperature aqueous solutions, biogeochemistry, the environment and cosmochemistry.
Papers that are field, experimentally, or computationally based are appropriate if they are of broad international interest. The Journal generally does not publish papers that are primarily of regional or local interest, or which are primarily focused on remediation and applied geochemistry.
The Journal also welcomes innovative papers dealing with significant analytical advances that are of wide interest in the community and extend significantly beyond the scope of what would be included in the methods section of a standard research paper.