β cell dedifferentiation, the underlying mechanism of diabetes in Wolfram syndrome

IF 15.8 1区 医学 Q1 CELL BIOLOGY
Kikuko Amo-Shiinoki, Katsuya Tanabe, Wataru Nishimura, Masayuki Hatanaka, Manabu Kondo, Syota Kagawa, Meng Zou, Shuntaro Morikawa, Yoshihiko Sato, Mitsuhisa Komatsu, Hiroki Mizukami, Naoki Nishida, Shun-Ichiro Asahara, Hiroshi Masutani, Yukio Tanizawa
{"title":"β cell dedifferentiation, the underlying mechanism of diabetes in Wolfram syndrome","authors":"Kikuko Amo-Shiinoki, Katsuya Tanabe, Wataru Nishimura, Masayuki Hatanaka, Manabu Kondo, Syota Kagawa, Meng Zou, Shuntaro Morikawa, Yoshihiko Sato, Mitsuhisa Komatsu, Hiroki Mizukami, Naoki Nishida, Shun-Ichiro Asahara, Hiroshi Masutani, Yukio Tanizawa","doi":"10.1126/scitranslmed.adp2332","DOIUrl":null,"url":null,"abstract":"Insulin-dependent diabetes in patients with Wolfram syndrome (WS; OMIM 222300) has been linked to endoplasmic reticulum (ER) stress caused by <jats:italic>WFS1</jats:italic> gene mutations. However, the pathological process of ER stress–associated β cell failure remains to be fully elucidated. Our results indicate loss of β cell lineage and subsequent dedifferentiation as the mechanisms underlying functional and mass deficits in WS. An immunohistochemical analysis of human pancreatic sections from deceased individuals with WS revealed a near-complete loss of β cells and subsequent decrease in α cells, suggesting loss of endocrine function. <jats:italic>Wfs1</jats:italic> -deficient mice displayed dysfunction, gradual loss, and dedifferentiation of β cells, leading to permanent hyperglycemia. Impairment of the β cell lineage was observed after weaning, leading to the mixed phenotype of insulin- and glucagon-producing cells in a subset of the lineage-traced β cells. Islets of <jats:italic>Wfs1</jats:italic> -deficient mice increased the number of dedifferentiated cells that maintained general endocrine features but were no longer reactive with antisera against pancreatic hormones. Mechanistically, <jats:italic>Wfs1</jats:italic> -null islets had a lower adenosine triphosphate content and impaired oxidative glycolysis, although mitochondrial oxidative function was maintained. The functional and metabolic alterations of WS β cells were recovered by deletion of thioredoxin-interacting protein (Txnip), an ER stress–induced protein up-regulated in <jats:italic>Wfs1</jats:italic> deficiency. <jats:italic>Txnip</jats:italic> deletion preserved functional β cells and prevented diabetes progression in <jats:italic>Wfs1</jats:italic> -deficient mice. Together, this study deciphered pathological mechanisms of β cell dedifferentiation in β cell failure and has implications for Txnip inhibition in WS therapy.","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"15 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1126/scitranslmed.adp2332","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Insulin-dependent diabetes in patients with Wolfram syndrome (WS; OMIM 222300) has been linked to endoplasmic reticulum (ER) stress caused by WFS1 gene mutations. However, the pathological process of ER stress–associated β cell failure remains to be fully elucidated. Our results indicate loss of β cell lineage and subsequent dedifferentiation as the mechanisms underlying functional and mass deficits in WS. An immunohistochemical analysis of human pancreatic sections from deceased individuals with WS revealed a near-complete loss of β cells and subsequent decrease in α cells, suggesting loss of endocrine function. Wfs1 -deficient mice displayed dysfunction, gradual loss, and dedifferentiation of β cells, leading to permanent hyperglycemia. Impairment of the β cell lineage was observed after weaning, leading to the mixed phenotype of insulin- and glucagon-producing cells in a subset of the lineage-traced β cells. Islets of Wfs1 -deficient mice increased the number of dedifferentiated cells that maintained general endocrine features but were no longer reactive with antisera against pancreatic hormones. Mechanistically, Wfs1 -null islets had a lower adenosine triphosphate content and impaired oxidative glycolysis, although mitochondrial oxidative function was maintained. The functional and metabolic alterations of WS β cells were recovered by deletion of thioredoxin-interacting protein (Txnip), an ER stress–induced protein up-regulated in Wfs1 deficiency. Txnip deletion preserved functional β cells and prevented diabetes progression in Wfs1 -deficient mice. Together, this study deciphered pathological mechanisms of β cell dedifferentiation in β cell failure and has implications for Txnip inhibition in WS therapy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Translational Medicine
Science Translational Medicine CELL BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
26.70
自引率
1.20%
发文量
309
审稿时长
1.7 months
期刊介绍: Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research. The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases. The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine. The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信