{"title":"β cell dedifferentiation, the underlying mechanism of diabetes in Wolfram syndrome","authors":"Kikuko Amo-Shiinoki, Katsuya Tanabe, Wataru Nishimura, Masayuki Hatanaka, Manabu Kondo, Syota Kagawa, Meng Zou, Shuntaro Morikawa, Yoshihiko Sato, Mitsuhisa Komatsu, Hiroki Mizukami, Naoki Nishida, Shun-Ichiro Asahara, Hiroshi Masutani, Yukio Tanizawa","doi":"10.1126/scitranslmed.adp2332","DOIUrl":null,"url":null,"abstract":"Insulin-dependent diabetes in patients with Wolfram syndrome (WS; OMIM 222300) has been linked to endoplasmic reticulum (ER) stress caused by <jats:italic>WFS1</jats:italic> gene mutations. However, the pathological process of ER stress–associated β cell failure remains to be fully elucidated. Our results indicate loss of β cell lineage and subsequent dedifferentiation as the mechanisms underlying functional and mass deficits in WS. An immunohistochemical analysis of human pancreatic sections from deceased individuals with WS revealed a near-complete loss of β cells and subsequent decrease in α cells, suggesting loss of endocrine function. <jats:italic>Wfs1</jats:italic> -deficient mice displayed dysfunction, gradual loss, and dedifferentiation of β cells, leading to permanent hyperglycemia. Impairment of the β cell lineage was observed after weaning, leading to the mixed phenotype of insulin- and glucagon-producing cells in a subset of the lineage-traced β cells. Islets of <jats:italic>Wfs1</jats:italic> -deficient mice increased the number of dedifferentiated cells that maintained general endocrine features but were no longer reactive with antisera against pancreatic hormones. Mechanistically, <jats:italic>Wfs1</jats:italic> -null islets had a lower adenosine triphosphate content and impaired oxidative glycolysis, although mitochondrial oxidative function was maintained. The functional and metabolic alterations of WS β cells were recovered by deletion of thioredoxin-interacting protein (Txnip), an ER stress–induced protein up-regulated in <jats:italic>Wfs1</jats:italic> deficiency. <jats:italic>Txnip</jats:italic> deletion preserved functional β cells and prevented diabetes progression in <jats:italic>Wfs1</jats:italic> -deficient mice. Together, this study deciphered pathological mechanisms of β cell dedifferentiation in β cell failure and has implications for Txnip inhibition in WS therapy.","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"15 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1126/scitranslmed.adp2332","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Insulin-dependent diabetes in patients with Wolfram syndrome (WS; OMIM 222300) has been linked to endoplasmic reticulum (ER) stress caused by WFS1 gene mutations. However, the pathological process of ER stress–associated β cell failure remains to be fully elucidated. Our results indicate loss of β cell lineage and subsequent dedifferentiation as the mechanisms underlying functional and mass deficits in WS. An immunohistochemical analysis of human pancreatic sections from deceased individuals with WS revealed a near-complete loss of β cells and subsequent decrease in α cells, suggesting loss of endocrine function. Wfs1 -deficient mice displayed dysfunction, gradual loss, and dedifferentiation of β cells, leading to permanent hyperglycemia. Impairment of the β cell lineage was observed after weaning, leading to the mixed phenotype of insulin- and glucagon-producing cells in a subset of the lineage-traced β cells. Islets of Wfs1 -deficient mice increased the number of dedifferentiated cells that maintained general endocrine features but were no longer reactive with antisera against pancreatic hormones. Mechanistically, Wfs1 -null islets had a lower adenosine triphosphate content and impaired oxidative glycolysis, although mitochondrial oxidative function was maintained. The functional and metabolic alterations of WS β cells were recovered by deletion of thioredoxin-interacting protein (Txnip), an ER stress–induced protein up-regulated in Wfs1 deficiency. Txnip deletion preserved functional β cells and prevented diabetes progression in Wfs1 -deficient mice. Together, this study deciphered pathological mechanisms of β cell dedifferentiation in β cell failure and has implications for Txnip inhibition in WS therapy.
期刊介绍:
Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research.
The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases.
The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine.
The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.