D. Fuchs, A. K. Jaiswal, F. Wilhelm, D. Wang, A. Rogalev, M. Le Tacon
{"title":"Robust spin-orbit coupling in semimetallic SrIrO3 under hydrostatic pressure","authors":"D. Fuchs, A. K. Jaiswal, F. Wilhelm, D. Wang, A. Rogalev, M. Le Tacon","doi":"10.1103/physrevb.111.075142","DOIUrl":null,"url":null,"abstract":"The semimetallic behavior of the perovskite iridate SrIrO</a:mi>3</a:mn></a:msub></a:mrow></a:math> shifts the end member of the strongly spin-orbit (SO) coupled Ruddlesden-Popper series <b:math xmlns:b=\"http://www.w3.org/1998/Math/MathML\"><b:mrow><b:msub><b:mi mathvariant=\"normal\">Sr</b:mi><b:mrow><b:mi>n</b:mi><b:mo>+</b:mo><b:mn>1</b:mn></b:mrow></b:msub><b:msub><b:mi mathvariant=\"normal\">Ir</b:mi><b:mi>n</b:mi></b:msub><b:msub><b:mi mathvariant=\"normal\">O</b:mi><b:mrow><b:mn>3</b:mn><b:mi>n</b:mi><b:mo>+</b:mo><b:mn>1</b:mn></b:mrow></b:msub></b:mrow></b:math> away from the Mott insulating regime and the half-filled pseudospin <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\"><f:mrow><f:msub><f:mi>J</f:mi><f:mi>eff</f:mi></f:msub><f:mo>=</f:mo><f:mfrac><f:mn>1</f:mn><f:mn>2</f:mn></f:mfrac></f:mrow></f:math> ground state well established in the layered iridates (<g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\"><g:mrow><g:mi>n</g:mi><g:mo>=</g:mo><g:mn>1</g:mn></g:mrow></g:math> and 2). To investigate the robustness of the SO coupled ground state of <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\"><h:mrow><h:msub><h:mi>SrIrO</h:mi><h:mn>3</h:mn></h:msub></h:mrow></h:math>, x-ray absorption spectroscopy was carried out at the Ir <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\"><i:msub><i:mi>L</i:mi><i:mrow><i:mn>2</i:mn><i:mo>,</i:mo><i:mn>3</i:mn></i:mrow></i:msub></i:math> edges under hydrostatic pressure up to 50 GPa at room temperature. The effective SO coupling was deduced from the branching ratio (BR) of the Ir <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\"><j:msub><j:mi>L</j:mi><j:mn>2</j:mn></j:msub></j:math> and <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\"><k:msub><k:mi>L</k:mi><k:mn>3</k:mn></k:msub></k:math> white lines. With increasing pressure, the BR decreases, and the Ir <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\"><l:msub><l:mi>L</l:mi><l:mrow><l:mn>2</l:mn><l:mo>,</l:mo><l:mn>3</l:mn></l:mrow></l:msub></l:math> peak positions shift to higher energies. The number of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:mrow><m:mn>5</m:mn><m:mi>d</m:mi></m:mrow></m:math> holes remains constant, indicating that the spectral weight redistribution and peak shifts arise from orbital mixing between <n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\"><n:msub><n:mi>t</n:mi><n:mrow><n:mn>2</n:mn><n:mi>g</n:mi></n:mrow></n:msub></n:math> and <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\"><o:msub><o:mi>e</o:mi><o:mi>g</o:mi></o:msub></o:math> related states. The expectation value of the angular part of the SO operator <p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\"><p:mrow><p:mo>〈</p:mo><p:mi>LS</p:mi><p:mo>〉</p:mo></p:mrow></p:math> decreases by <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\"><q:mrow><q:mo>∼</q:mo><q:mn>15</q:mn><q:mo>%</q:mo></q:mrow></q:math> at 50 GPa. This reduction, which is very similar to that observed in the layered iridates, is well explained by an increase of the octahedral crystal field due to the shortening of the Ir-O bond length under compression. Consistent with theoretical predictions, the orbital mixing and <r:math xmlns:r=\"http://www.w3.org/1998/Math/MathML\"><r:mrow><r:mo>〈</r:mo><r:mi>LS</r:mi><r:mo>〉</r:mo></r:mrow></r:math> decrease as the crystal field increases. However, the effective SO coupling remains robust against pressure and does not indicate a covalency-driven breakdown within the investigated pressure range. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"2 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.075142","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The semimetallic behavior of the perovskite iridate SrIrO3 shifts the end member of the strongly spin-orbit (SO) coupled Ruddlesden-Popper series Srn+1IrnO3n+1 away from the Mott insulating regime and the half-filled pseudospin Jeff=12 ground state well established in the layered iridates (n=1 and 2). To investigate the robustness of the SO coupled ground state of SrIrO3, x-ray absorption spectroscopy was carried out at the Ir L2,3 edges under hydrostatic pressure up to 50 GPa at room temperature. The effective SO coupling was deduced from the branching ratio (BR) of the Ir L2 and L3 white lines. With increasing pressure, the BR decreases, and the Ir L2,3 peak positions shift to higher energies. The number of 5d holes remains constant, indicating that the spectral weight redistribution and peak shifts arise from orbital mixing between t2g and eg related states. The expectation value of the angular part of the SO operator 〈LS〉 decreases by ∼15% at 50 GPa. This reduction, which is very similar to that observed in the layered iridates, is well explained by an increase of the octahedral crystal field due to the shortening of the Ir-O bond length under compression. Consistent with theoretical predictions, the orbital mixing and 〈LS〉 decrease as the crystal field increases. However, the effective SO coupling remains robust against pressure and does not indicate a covalency-driven breakdown within the investigated pressure range. Published by the American Physical Society2025
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter