Robust spin-orbit coupling in semimetallic SrIrO3 under hydrostatic pressure

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
D. Fuchs, A. K. Jaiswal, F. Wilhelm, D. Wang, A. Rogalev, M. Le Tacon
{"title":"Robust spin-orbit coupling in semimetallic SrIrO3 under hydrostatic pressure","authors":"D. Fuchs, A. K. Jaiswal, F. Wilhelm, D. Wang, A. Rogalev, M. Le Tacon","doi":"10.1103/physrevb.111.075142","DOIUrl":null,"url":null,"abstract":"The semimetallic behavior of the perovskite iridate SrIrO</a:mi>3</a:mn></a:msub></a:mrow></a:math> shifts the end member of the strongly spin-orbit (SO) coupled Ruddlesden-Popper series <b:math xmlns:b=\"http://www.w3.org/1998/Math/MathML\"><b:mrow><b:msub><b:mi mathvariant=\"normal\">Sr</b:mi><b:mrow><b:mi>n</b:mi><b:mo>+</b:mo><b:mn>1</b:mn></b:mrow></b:msub><b:msub><b:mi mathvariant=\"normal\">Ir</b:mi><b:mi>n</b:mi></b:msub><b:msub><b:mi mathvariant=\"normal\">O</b:mi><b:mrow><b:mn>3</b:mn><b:mi>n</b:mi><b:mo>+</b:mo><b:mn>1</b:mn></b:mrow></b:msub></b:mrow></b:math> away from the Mott insulating regime and the half-filled pseudospin <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\"><f:mrow><f:msub><f:mi>J</f:mi><f:mi>eff</f:mi></f:msub><f:mo>=</f:mo><f:mfrac><f:mn>1</f:mn><f:mn>2</f:mn></f:mfrac></f:mrow></f:math> ground state well established in the layered iridates (<g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\"><g:mrow><g:mi>n</g:mi><g:mo>=</g:mo><g:mn>1</g:mn></g:mrow></g:math> and 2). To investigate the robustness of the SO coupled ground state of <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\"><h:mrow><h:msub><h:mi>SrIrO</h:mi><h:mn>3</h:mn></h:msub></h:mrow></h:math>, x-ray absorption spectroscopy was carried out at the Ir <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\"><i:msub><i:mi>L</i:mi><i:mrow><i:mn>2</i:mn><i:mo>,</i:mo><i:mn>3</i:mn></i:mrow></i:msub></i:math> edges under hydrostatic pressure up to 50 GPa at room temperature. The effective SO coupling was deduced from the branching ratio (BR) of the Ir <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\"><j:msub><j:mi>L</j:mi><j:mn>2</j:mn></j:msub></j:math> and <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\"><k:msub><k:mi>L</k:mi><k:mn>3</k:mn></k:msub></k:math> white lines. With increasing pressure, the BR decreases, and the Ir <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\"><l:msub><l:mi>L</l:mi><l:mrow><l:mn>2</l:mn><l:mo>,</l:mo><l:mn>3</l:mn></l:mrow></l:msub></l:math> peak positions shift to higher energies. The number of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:mrow><m:mn>5</m:mn><m:mi>d</m:mi></m:mrow></m:math> holes remains constant, indicating that the spectral weight redistribution and peak shifts arise from orbital mixing between <n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\"><n:msub><n:mi>t</n:mi><n:mrow><n:mn>2</n:mn><n:mi>g</n:mi></n:mrow></n:msub></n:math> and <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\"><o:msub><o:mi>e</o:mi><o:mi>g</o:mi></o:msub></o:math> related states. The expectation value of the angular part of the SO operator <p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\"><p:mrow><p:mo>〈</p:mo><p:mi>LS</p:mi><p:mo>〉</p:mo></p:mrow></p:math> decreases by <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\"><q:mrow><q:mo>∼</q:mo><q:mn>15</q:mn><q:mo>%</q:mo></q:mrow></q:math> at 50 GPa. This reduction, which is very similar to that observed in the layered iridates, is well explained by an increase of the octahedral crystal field due to the shortening of the Ir-O bond length under compression. Consistent with theoretical predictions, the orbital mixing and <r:math xmlns:r=\"http://www.w3.org/1998/Math/MathML\"><r:mrow><r:mo>〈</r:mo><r:mi>LS</r:mi><r:mo>〉</r:mo></r:mrow></r:math> decrease as the crystal field increases. However, the effective SO coupling remains robust against pressure and does not indicate a covalency-driven breakdown within the investigated pressure range. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"2 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.075142","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

The semimetallic behavior of the perovskite iridate SrIrO3 shifts the end member of the strongly spin-orbit (SO) coupled Ruddlesden-Popper series Srn+1IrnO3n+1 away from the Mott insulating regime and the half-filled pseudospin Jeff=12 ground state well established in the layered iridates (n=1 and 2). To investigate the robustness of the SO coupled ground state of SrIrO3, x-ray absorption spectroscopy was carried out at the Ir L2,3 edges under hydrostatic pressure up to 50 GPa at room temperature. The effective SO coupling was deduced from the branching ratio (BR) of the Ir L2 and L3 white lines. With increasing pressure, the BR decreases, and the Ir L2,3 peak positions shift to higher energies. The number of 5d holes remains constant, indicating that the spectral weight redistribution and peak shifts arise from orbital mixing between t2g and eg related states. The expectation value of the angular part of the SO operator LS decreases by 15% at 50 GPa. This reduction, which is very similar to that observed in the layered iridates, is well explained by an increase of the octahedral crystal field due to the shortening of the Ir-O bond length under compression. Consistent with theoretical predictions, the orbital mixing and LS decrease as the crystal field increases. However, the effective SO coupling remains robust against pressure and does not indicate a covalency-driven breakdown within the investigated pressure range. Published by the American Physical Society 2025
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信