First quasi-global soil moisture retrieval using Fengyun-3 GNSS-R constellation observations

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Wentao Yang , Fei Guo , Xiaohong Zhang , Yifan Zhu , Zheng Li , Zhiyu Zhang
{"title":"First quasi-global soil moisture retrieval using Fengyun-3 GNSS-R constellation observations","authors":"Wentao Yang ,&nbsp;Fei Guo ,&nbsp;Xiaohong Zhang ,&nbsp;Yifan Zhu ,&nbsp;Zheng Li ,&nbsp;Zhiyu Zhang","doi":"10.1016/j.rse.2025.114653","DOIUrl":null,"url":null,"abstract":"<div><div>Global Navigation Satellite System-Reflectometry (GNSS-R) has considerable potential for large-scale soil moisture (SM) monitoring. With the Fengyun-3 (FY-3) E, F, and G satellites currently in orbit, the FY-3 satellite series has formed the GNSS-R constellation. A comprehensive analysis and validation of the SM retrieval capability of the FY-3 GNSS-R constellation observations are essential. This study is the first to use FY-3 GNSS-R constellation observations to evaluate their performance in quasi-global daily SM retrieval. Specifically, this study proposed an effective SM retrieval method for obtaining an FY-3 GNSS-R SM with minimal ancillary data. Compared with the Soil Moisture Active Passive (SMAP) reference SM, the FY-3 SM exhibited a reasonable global spatial pattern as SMAP, with a root mean square error (RMSE) of 0.039 <span><math><msup><mi>cm</mi><mn>3</mn></msup></math></span>/<span><math><msup><mi>cm</mi><mn>3</mn></msup></math></span> in low vegetation areas. Validation results from over 200 independent in situ stations showed that the unbiased RMSE and correlation for FY-3 SM were 0.039 <span><math><msup><mi>cm</mi><mn>3</mn></msup></math></span>/<span><math><msup><mi>cm</mi><mn>3</mn></msup></math></span> and 0.60, respectively. Triple collocation (TC) analysis showed that the standard deviation and correlation for the FY-3 SM were 0.017 <span><math><msup><mi>cm</mi><mn>3</mn></msup></math></span>/<span><math><msup><mi>cm</mi><mn>3</mn></msup></math></span> and 0.62, respectively. Global and local validations indicate that the SM derived from the FY-3 GNSS-R constellation observations has well-defined accuracy and effectively captures spatiotemporal variations. Compared to the contemporaneous Cyclone GNSS official SM, the accuracy of the FY-3 SM retrieved using the proposed method improved by 17.1 %. Consequently, the SM from the FY-3 GNSS-R constellation observations can be an invaluable complement to the global SM dataset. Furthermore, this method effectively reduced systematic bias and random errors in SM retrievals (unbiased RMSE (ubRMSE) from 0.041to 0.034 <span><math><msup><mi>cm</mi><mn>3</mn></msup></math></span>/<span><math><msup><mi>cm</mi><mn>3</mn></msup><mspace></mspace></math></span>and TC standard deviation from 0.034to 0.017 <span><math><msup><mi>cm</mi><mn>3</mn></msup></math></span>/<span><math><msup><mi>cm</mi><mn>3</mn></msup></math></span>), which may provide a valuable reference for generating SM products from subsequent FY-3 GNSS-R constellations.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"321 ","pages":"Article 114653"},"PeriodicalIF":11.1000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425725000574","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Global Navigation Satellite System-Reflectometry (GNSS-R) has considerable potential for large-scale soil moisture (SM) monitoring. With the Fengyun-3 (FY-3) E, F, and G satellites currently in orbit, the FY-3 satellite series has formed the GNSS-R constellation. A comprehensive analysis and validation of the SM retrieval capability of the FY-3 GNSS-R constellation observations are essential. This study is the first to use FY-3 GNSS-R constellation observations to evaluate their performance in quasi-global daily SM retrieval. Specifically, this study proposed an effective SM retrieval method for obtaining an FY-3 GNSS-R SM with minimal ancillary data. Compared with the Soil Moisture Active Passive (SMAP) reference SM, the FY-3 SM exhibited a reasonable global spatial pattern as SMAP, with a root mean square error (RMSE) of 0.039 cm3/cm3 in low vegetation areas. Validation results from over 200 independent in situ stations showed that the unbiased RMSE and correlation for FY-3 SM were 0.039 cm3/cm3 and 0.60, respectively. Triple collocation (TC) analysis showed that the standard deviation and correlation for the FY-3 SM were 0.017 cm3/cm3 and 0.62, respectively. Global and local validations indicate that the SM derived from the FY-3 GNSS-R constellation observations has well-defined accuracy and effectively captures spatiotemporal variations. Compared to the contemporaneous Cyclone GNSS official SM, the accuracy of the FY-3 SM retrieved using the proposed method improved by 17.1 %. Consequently, the SM from the FY-3 GNSS-R constellation observations can be an invaluable complement to the global SM dataset. Furthermore, this method effectively reduced systematic bias and random errors in SM retrievals (unbiased RMSE (ubRMSE) from 0.041to 0.034 cm3/cm3and TC standard deviation from 0.034to 0.017 cm3/cm3), which may provide a valuable reference for generating SM products from subsequent FY-3 GNSS-R constellations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信