BGPSeg: Boundary-Guided Primitive Instance Segmentation of Point Clouds

Zheng Fang;Chuanqing Zhuang;Zhengda Lu;Yiqun Wang;Lupeng Liu;Jun Xiao
{"title":"BGPSeg: Boundary-Guided Primitive Instance Segmentation of Point Clouds","authors":"Zheng Fang;Chuanqing Zhuang;Zhengda Lu;Yiqun Wang;Lupeng Liu;Jun Xiao","doi":"10.1109/TIP.2025.3540586","DOIUrl":null,"url":null,"abstract":"Point cloud primitive instance segmentation is critical for understanding the geometric shapes of man-made objects. Existing learning-based methods mainly focus on learning high-dimensional feature representations of points and further perform clustering or region growing to obtain corresponding primitive instances. However, these features generally cannot accurately represent the discriminability between instances, especially near the boundaries or in regions with small differences in geometric properties. This limitation often leads to over- or under-segmentation of geometric primitives. On the other hand, the boundaries of different primitives are the direct features that distinguish them and thus utilizing boundary information to guide feature learning and clustering is crucial for this task. In this paper, we propose a novel framework BGPSeg for point cloud primitive instance segmentation that utilizes boundary-guided feature extraction and clustering. Specifically, we first introduce a boundary-guided feature extractor with the additional input of a boundary probability map, which utilizes boundary-guided sampling and a boundary transformer to enhance feature discrimination among points crossing geometric boundaries. Furthermore, we propose a boundary-guided primitive clustering module, which combines boundary clues and geometric feature discrimination for clustering to further improve the segmentation performance. Finally, we demonstrate the effectiveness of our BGPSeg with a series of comparison and ablation experiments while achieving the state-of-the-art primitive instance segmentation. Our code is available at <uri>https://github.com/fz-20/BGPSeg</uri>.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"1454-1468"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10896454/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Point cloud primitive instance segmentation is critical for understanding the geometric shapes of man-made objects. Existing learning-based methods mainly focus on learning high-dimensional feature representations of points and further perform clustering or region growing to obtain corresponding primitive instances. However, these features generally cannot accurately represent the discriminability between instances, especially near the boundaries or in regions with small differences in geometric properties. This limitation often leads to over- or under-segmentation of geometric primitives. On the other hand, the boundaries of different primitives are the direct features that distinguish them and thus utilizing boundary information to guide feature learning and clustering is crucial for this task. In this paper, we propose a novel framework BGPSeg for point cloud primitive instance segmentation that utilizes boundary-guided feature extraction and clustering. Specifically, we first introduce a boundary-guided feature extractor with the additional input of a boundary probability map, which utilizes boundary-guided sampling and a boundary transformer to enhance feature discrimination among points crossing geometric boundaries. Furthermore, we propose a boundary-guided primitive clustering module, which combines boundary clues and geometric feature discrimination for clustering to further improve the segmentation performance. Finally, we demonstrate the effectiveness of our BGPSeg with a series of comparison and ablation experiments while achieving the state-of-the-art primitive instance segmentation. Our code is available at https://github.com/fz-20/BGPSeg.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信