Non-negative matrix factorization based single-channel source-separation of passive underwater acoustic signals in deep sea.

IF 1.2 Q3 ACOUSTICS
Jean Lecoulant, Abdel-Ouahab Boudraa, Samuel Pinson
{"title":"Non-negative matrix factorization based single-channel source-separation of passive underwater acoustic signals in deep sea.","authors":"Jean Lecoulant, Abdel-Ouahab Boudraa, Samuel Pinson","doi":"10.1121/10.0035936","DOIUrl":null,"url":null,"abstract":"<p><p>We use non-negative matrix factorization for source separation on ultra-low frequency passive-acoustic data from a single-channel recording acquired in deep sea. Non-negative matrix factorization decomposes the spectrogram into a spectral-component matrix and a time-encoding matrix. Detectors use known time-frequency features to group components from the same source and reconstruct spectrograms of blue whale calls, seismic sounds, and ship noise. Data are separated at low computational cost and without learning step. The separation assessment using scale-invariant signal-to-distortion ratio on spectrograms of simulated reference data is satisfying. Source separation on ocean-bottom seismometer data from the Southern Indian Ocean provides convincing results.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":"5 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0035936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

We use non-negative matrix factorization for source separation on ultra-low frequency passive-acoustic data from a single-channel recording acquired in deep sea. Non-negative matrix factorization decomposes the spectrogram into a spectral-component matrix and a time-encoding matrix. Detectors use known time-frequency features to group components from the same source and reconstruct spectrograms of blue whale calls, seismic sounds, and ship noise. Data are separated at low computational cost and without learning step. The separation assessment using scale-invariant signal-to-distortion ratio on spectrograms of simulated reference data is satisfying. Source separation on ocean-bottom seismometer data from the Southern Indian Ocean provides convincing results.

基于非负矩阵分解的深海被动水声信号单通道源分离。
利用非负矩阵分解对深海单通道记录的超低频无源声数据进行源分离。非负矩阵分解将谱图分解为谱分量矩阵和时间编码矩阵。探测器使用已知的时频特征对来自同一来源的组件进行分组,并重建蓝鲸叫声,地震声音和船舶噪声的频谱图。数据分离计算成本低,无需学习步骤。利用尺度不变信失真比对模拟参考数据的谱图进行分离评价是令人满意的。对南印度洋海底地震仪数据的震源分离提供了令人信服的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信