Motility genes are associated with the occurrence of Drosophila melanogaster-associated gut microbes.

IF 5.1 Q1 ECOLOGY
ISME communications Pub Date : 2025-01-27 eCollection Date: 2025-01-01 DOI:10.1093/ismeco/ycaf013
Rishi Bhandari, Caleb J Robbins, Arinder K Arora, John M Chaston, David S Kang
{"title":"Motility genes are associated with the occurrence of <i>Drosophila melanogaster</i>-associated gut microbes.","authors":"Rishi Bhandari, Caleb J Robbins, Arinder K Arora, John M Chaston, David S Kang","doi":"10.1093/ismeco/ycaf013","DOIUrl":null,"url":null,"abstract":"<p><p>Recent work highlighted the role of motility genes in dispersing fly-associated microbes and their spread between hosts. We investigated whether bacterial genes encoding motility are associated with the occurrence of bacteria above passive dispersal levels in the gut of wild <i>Drosophila melanogaster</i>. We revisited 16S amplicon and shotgun metagenome data of wild flies and correlated four genera of bacteria (<i>Commensalibacter</i>, <i>Gluconobacter</i>, <i>Lactobacillus</i>, and <i>Tatumella</i>) with motility genes. We plotted the microbes against neutral models of ecological drift and passive dispersal. Microbes with positive correlations to motility were exclusively found at or above neutral model predictions, suggesting motility genes are crucial for fly microbiota spread and colonization. This information is crucial for understanding how specific gene functions contribute to microbial community dispersal and colonization within the fly host. Moreover, this study's findings serve as a proof of concept for using the neutral model to predict microbial functions essential for survival and dissemination in diverse hosts.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycaf013"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11831033/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycaf013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent work highlighted the role of motility genes in dispersing fly-associated microbes and their spread between hosts. We investigated whether bacterial genes encoding motility are associated with the occurrence of bacteria above passive dispersal levels in the gut of wild Drosophila melanogaster. We revisited 16S amplicon and shotgun metagenome data of wild flies and correlated four genera of bacteria (Commensalibacter, Gluconobacter, Lactobacillus, and Tatumella) with motility genes. We plotted the microbes against neutral models of ecological drift and passive dispersal. Microbes with positive correlations to motility were exclusively found at or above neutral model predictions, suggesting motility genes are crucial for fly microbiota spread and colonization. This information is crucial for understanding how specific gene functions contribute to microbial community dispersal and colonization within the fly host. Moreover, this study's findings serve as a proof of concept for using the neutral model to predict microbial functions essential for survival and dissemination in diverse hosts.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信