Pardeep Vasudev, Mehran Azimbagirad, Shahab Aslani, Moucheng Xu, Yufei Wang, Robert Chapman, Hannah Coleman, Christopher Werlein, Claire Walsh, Peter Lee, Paul Tafforeau, Joseph Jacob
{"title":"Harnessing Advanced Machine Learning Techniques for Microscopic Vessel Segmentation in Pulmonary Fibrosis Using Novel Hierarchical Phase-Contrast Tomography Images.","authors":"Pardeep Vasudev, Mehran Azimbagirad, Shahab Aslani, Moucheng Xu, Yufei Wang, Robert Chapman, Hannah Coleman, Christopher Werlein, Claire Walsh, Peter Lee, Paul Tafforeau, Joseph Jacob","doi":"10.1055/a-2540-8166","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong> Fibrotic lung disease is a progressive illness that causes scarring and ultimately respiratory failure, with irreversible damage by the time it is diagnosed on computed tomography imaging. Recent research postulates the role of the lung vasculature on the pathogenesis of the disease. With the recent development of high-resolution hierarchical phase-contrast tomography (HiP-CT), we have the potential to understand and detect changes in the lungs long before conventional imaging. However, to gain quantitative insight into vascular changes you first need to be able to segment the vessels before further downstream analysis can be conducted. Aside from this, HiP-CT generates large-volume, high-resolution data which is time-consuming and expensive to label.</p><p><strong>Objectives: </strong> This project aims to qualitatively assess the latest machine learning methods for vessel segmentation in HiP-CT data to enable label propagation as the first step for imaging biomarker discovery, with the goal to identify early-stage interstitial lung disease amenable to treatment, before fibrosis begins.</p><p><strong>Methods: </strong> Semisupervised learning (SSL) has become a growing method to tackle sparsely labeled datasets due to its leveraging of unlabeled data. In this study, we will compare two SSL methods; Seg PL, based on pseudo-labeling, and MisMatch, using consistency regularization against state-of-the-art supervised learning method, nnU-Net, on vessel segmentation in sparsely labeled lung HiP-CT data.</p><p><strong>Results: </strong> On initial experimentation, both MisMatch and SegPL showed promising performance on qualitative review. In comparison with supervised learning, both MisMatch and SegPL showed better out-of-distribution performance within the same sample (different vessel morphology and texture vessels), though supervised learning provided more consistent segmentations for well-represented labels in the limited annotations.</p><p><strong>Conclusion: </strong> Further quantitative research is required to better assess the generalizability of these findings, though they show promising first steps toward leveraging this novel data to tackle fibrotic lung disease.</p>","PeriodicalId":49822,"journal":{"name":"Methods of Information in Medicine","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods of Information in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2540-8166","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Fibrotic lung disease is a progressive illness that causes scarring and ultimately respiratory failure, with irreversible damage by the time it is diagnosed on computed tomography imaging. Recent research postulates the role of the lung vasculature on the pathogenesis of the disease. With the recent development of high-resolution hierarchical phase-contrast tomography (HiP-CT), we have the potential to understand and detect changes in the lungs long before conventional imaging. However, to gain quantitative insight into vascular changes you first need to be able to segment the vessels before further downstream analysis can be conducted. Aside from this, HiP-CT generates large-volume, high-resolution data which is time-consuming and expensive to label.
Objectives: This project aims to qualitatively assess the latest machine learning methods for vessel segmentation in HiP-CT data to enable label propagation as the first step for imaging biomarker discovery, with the goal to identify early-stage interstitial lung disease amenable to treatment, before fibrosis begins.
Methods: Semisupervised learning (SSL) has become a growing method to tackle sparsely labeled datasets due to its leveraging of unlabeled data. In this study, we will compare two SSL methods; Seg PL, based on pseudo-labeling, and MisMatch, using consistency regularization against state-of-the-art supervised learning method, nnU-Net, on vessel segmentation in sparsely labeled lung HiP-CT data.
Results: On initial experimentation, both MisMatch and SegPL showed promising performance on qualitative review. In comparison with supervised learning, both MisMatch and SegPL showed better out-of-distribution performance within the same sample (different vessel morphology and texture vessels), though supervised learning provided more consistent segmentations for well-represented labels in the limited annotations.
Conclusion: Further quantitative research is required to better assess the generalizability of these findings, though they show promising first steps toward leveraging this novel data to tackle fibrotic lung disease.
期刊介绍:
Good medicine and good healthcare demand good information. Since the journal''s founding in 1962, Methods of Information in Medicine has stressed the methodology and scientific fundamentals of organizing, representing and analyzing data, information and knowledge in biomedicine and health care. Covering publications in the fields of biomedical and health informatics, medical biometry, and epidemiology, the journal publishes original papers, reviews, reports, opinion papers, editorials, and letters to the editor. From time to time, the journal publishes articles on particular focus themes as part of a journal''s issue.