ACU-Net: Attention-based convolutional U-Net model for segmenting brain tumors in fMRI images.

IF 2.9 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES
DIGITAL HEALTH Pub Date : 2025-02-17 eCollection Date: 2025-01-01 DOI:10.1177/20552076251320288
Md Alamin Talukder, Md Abu Layek, Md Aslam Hossain, Md Aminul Islam, Mohammad Nur-E-Alam, Mohsin Kazi
{"title":"ACU-Net: Attention-based convolutional U-Net model for segmenting brain tumors in fMRI images.","authors":"Md Alamin Talukder, Md Abu Layek, Md Aslam Hossain, Md Aminul Islam, Mohammad Nur-E-Alam, Mohsin Kazi","doi":"10.1177/20552076251320288","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Accurate segmentation of brain tumors in medical imaging is essential for diagnosis and treatment planning. Current techniques often struggle with capturing complex tumor features and are computationally demanding, limiting their clinical application. This study introduces the attention-based convolutional U-Net (ACU-Net) model, designed to improve segmentation accuracy and efficiency in fMRI images by incorporating attention mechanisms that selectively highlight critical features while preserving spatial context.</p><p><strong>Methods: </strong>The ACU-Net model combines convolutional neural networks (CNNs) with attention mechanisms to enhance feature extraction and spatial coherence. We evaluated ACU-Net on the BraTS 2018 and BraTS 2020 fMRI datasets using rigorous data splitting for training, validation, and testing. Performance metrics, particularly Dice scores, were used to assess segmentation accuracy across different tumor regions, including whole tumor (WT), tumor core (TC), and enhancing tumor (ET) classes.</p><p><strong>Results: </strong>ACU-Net demonstrated high segmentation accuracy, achieving Dice scores of 99.23%, 99.27%, and 96.99% for WT, TC, and ET, respectively, on the BraTS 2018 dataset, and 98.72%, 98.40%, and 97.66% for WT, TC, and ET on the BraTS 2020 dataset. These results indicate that ACU-Net effectively captures tumor boundaries and subregions with precision, surpassing traditional segmentation approaches.</p><p><strong>Conclusion: </strong>The ACU-Net model shows significant potential to enhance clinical diagnosis and treatment planning by providing precise and efficient brain tumor segmentation in fMRI images. The integration of attention mechanisms within a CNN architecture proves beneficial for identifying complex tumor structures, suggesting that ACU-Net can be a valuable tool in medical imaging applications.</p>","PeriodicalId":51333,"journal":{"name":"DIGITAL HEALTH","volume":"11 ","pages":"20552076251320288"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11833834/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DIGITAL HEALTH","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/20552076251320288","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Accurate segmentation of brain tumors in medical imaging is essential for diagnosis and treatment planning. Current techniques often struggle with capturing complex tumor features and are computationally demanding, limiting their clinical application. This study introduces the attention-based convolutional U-Net (ACU-Net) model, designed to improve segmentation accuracy and efficiency in fMRI images by incorporating attention mechanisms that selectively highlight critical features while preserving spatial context.

Methods: The ACU-Net model combines convolutional neural networks (CNNs) with attention mechanisms to enhance feature extraction and spatial coherence. We evaluated ACU-Net on the BraTS 2018 and BraTS 2020 fMRI datasets using rigorous data splitting for training, validation, and testing. Performance metrics, particularly Dice scores, were used to assess segmentation accuracy across different tumor regions, including whole tumor (WT), tumor core (TC), and enhancing tumor (ET) classes.

Results: ACU-Net demonstrated high segmentation accuracy, achieving Dice scores of 99.23%, 99.27%, and 96.99% for WT, TC, and ET, respectively, on the BraTS 2018 dataset, and 98.72%, 98.40%, and 97.66% for WT, TC, and ET on the BraTS 2020 dataset. These results indicate that ACU-Net effectively captures tumor boundaries and subregions with precision, surpassing traditional segmentation approaches.

Conclusion: The ACU-Net model shows significant potential to enhance clinical diagnosis and treatment planning by providing precise and efficient brain tumor segmentation in fMRI images. The integration of attention mechanisms within a CNN architecture proves beneficial for identifying complex tumor structures, suggesting that ACU-Net can be a valuable tool in medical imaging applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
DIGITAL HEALTH
DIGITAL HEALTH Multiple-
CiteScore
2.90
自引率
7.70%
发文量
302
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信