[Effect of neurofeedback training on relative α variant score monitored by bedside continuous electroencephalography and optic nerve sheath diameter evaluated by ultrasound in patients with ischemic hypoxic encephalopathy].

Q3 Medicine
Jie Sun, Jian Wan
{"title":"[Effect of neurofeedback training on relative α variant score monitored by bedside continuous electroencephalography and optic nerve sheath diameter evaluated by ultrasound in patients with ischemic hypoxic encephalopathy].","authors":"Jie Sun, Jian Wan","doi":"10.3760/cma.j.cn121430-20240509-00421","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To approach the evaluation of relative α variant score monitored by bedside continuous electroencephalography and optic nerve sheath diameter (ONSD) evaluated by ultrasound in patients with ischemic hypoxic encephalopathy, and to observe the effect of neurofeedback training on brain function.</p><p><strong>Methods: </strong>A prospective observational study was conducted. The patients admitted to the emergency and intensive care department of Shanghai Pudong New Area People's Hospital from January 2021 to December 2023, who meet the diagnostic criteria of ischemic hypoxic encephalopathy with the Glasgow coma score (GCS) ≤ 8 at admission receiving neurofeedback training were enrolled as the study object (observation group), and the patients without neurofeedback training and GCS score ≤ 8 at admission were enrolled as the controls (control group). Both groups received intravenous neurotrophic therapy combining ganglioside and cerebrolysin for 10 days as one course of treatment. On this basis, the observation group additionally received continuous neurofeedback training including visual feedback, auditory feedback, meditation and relaxation for 14 days. Bedside continuous electroencephalography was used for monitoring relative α variation score, and ultrasound was used to determine ONSD. The average power and slow wave power [expressed as delta-theta ratio (DTR)] of five channels in electroencephalography before and 14 days after neurofeedback training were examined. The differences in peripheral blood neutrophil/lymphocyte ratio (NLR), Hamilton depression scale (HAMD) score, National Institutes of Health stroke scale (NIHSS) score, plasma levels of 5-hydroxytryptamine (5-HT) and brain-derived neurotrophic factor (BDNF).</p><p><strong>Results: </strong>A total of 60 patients were enrolled in the observation group and 50 patients in the control group finally. There was no significant difference in gender, age or course of disease between the two groups. The ONSD and relative α variant score in the observation group were significantly higher than those in the control group [ONDS (mm): 5.59±0.42 vs. 3.23±0.34, relative α variant score: 2.28±0.39 vs. 0.83±0.28, both P < 0.01]. After neurofeedback training for 14 days, the mean power and DTR in five channels of electroencephalography in the observation group were significantly lower than those before treatment [mean power (μV<sup>2</sup>/Hz): 95.35±3.61 vs. 102.58±4.23 in frontal pole 1 (Fp1), 38.56±4.73 vs. 46.13±2.36 in frontal 3 (F3), 34.33±5.87 vs. 51.71±4.65 in central 3 (C3), 58.37±4.45 vs. 62.95±3.22 in F7, 45.23±2.41 vs. 54.14±2.45 in temporal 3 (T3); DTR (μV<sup>2</sup>/Hz): 75.21±11.34 vs. 84.12±11.35 in ground electrode (GND), 72.31±21.67 vs. 88.23±10.25 in reference electrode (REF), 81.34±8.57 vs. 92.41±8.56 in F4, 71.25±5.42 vs. 87.23±5.64 in parietal 3 (P3), 70.12±5.88 vs. 85.67±6.12 in P4; all P < 0.05]. However, there was no significant difference in the mean power of five channels before and after treatment in the control group. There was no significant difference in the HAMD score or NIHSS score before treatment between the two groups. The above scores at 14 days after treatment were significantly lower than before, and the decrease was more significant in the observation group (HAMD score: 4.59±1.06 vs. 10.69±0.97, NIHSS score: 6.81±0.66 vs. 8.45±0.87, both P < 0.01). There was no significant difference in the plasma 5-HT, BDNF or peripheral blood NLR before treatment between the two groups. The above parameters at 14 days after treatment were improved as compared with before, and the levels in the observation group were superior to control group [5-HT (mg/L): 150.25±17.37 vs. 123.34±16.18, BDNF (mg/L): 19.37±2.35 vs. 12.48±2.18, NLR: 4.78±0.83 vs. 5.81±1.17, all P < 0.01].</p><p><strong>Conclusions: </strong>Both ONDS determined by ultrasound and relative α variation score monitored by electroencephalography changed significantly in the patients with ischemic hypoxic encephalopathy. Neurofeedback training can effectively improve brain function in patients with ischemic hypoxic encephalopathy.</p>","PeriodicalId":24079,"journal":{"name":"Zhonghua wei zhong bing ji jiu yi xue","volume":"37 1","pages":"65-69"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhonghua wei zhong bing ji jiu yi xue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3760/cma.j.cn121430-20240509-00421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To approach the evaluation of relative α variant score monitored by bedside continuous electroencephalography and optic nerve sheath diameter (ONSD) evaluated by ultrasound in patients with ischemic hypoxic encephalopathy, and to observe the effect of neurofeedback training on brain function.

Methods: A prospective observational study was conducted. The patients admitted to the emergency and intensive care department of Shanghai Pudong New Area People's Hospital from January 2021 to December 2023, who meet the diagnostic criteria of ischemic hypoxic encephalopathy with the Glasgow coma score (GCS) ≤ 8 at admission receiving neurofeedback training were enrolled as the study object (observation group), and the patients without neurofeedback training and GCS score ≤ 8 at admission were enrolled as the controls (control group). Both groups received intravenous neurotrophic therapy combining ganglioside and cerebrolysin for 10 days as one course of treatment. On this basis, the observation group additionally received continuous neurofeedback training including visual feedback, auditory feedback, meditation and relaxation for 14 days. Bedside continuous electroencephalography was used for monitoring relative α variation score, and ultrasound was used to determine ONSD. The average power and slow wave power [expressed as delta-theta ratio (DTR)] of five channels in electroencephalography before and 14 days after neurofeedback training were examined. The differences in peripheral blood neutrophil/lymphocyte ratio (NLR), Hamilton depression scale (HAMD) score, National Institutes of Health stroke scale (NIHSS) score, plasma levels of 5-hydroxytryptamine (5-HT) and brain-derived neurotrophic factor (BDNF).

Results: A total of 60 patients were enrolled in the observation group and 50 patients in the control group finally. There was no significant difference in gender, age or course of disease between the two groups. The ONSD and relative α variant score in the observation group were significantly higher than those in the control group [ONDS (mm): 5.59±0.42 vs. 3.23±0.34, relative α variant score: 2.28±0.39 vs. 0.83±0.28, both P < 0.01]. After neurofeedback training for 14 days, the mean power and DTR in five channels of electroencephalography in the observation group were significantly lower than those before treatment [mean power (μV2/Hz): 95.35±3.61 vs. 102.58±4.23 in frontal pole 1 (Fp1), 38.56±4.73 vs. 46.13±2.36 in frontal 3 (F3), 34.33±5.87 vs. 51.71±4.65 in central 3 (C3), 58.37±4.45 vs. 62.95±3.22 in F7, 45.23±2.41 vs. 54.14±2.45 in temporal 3 (T3); DTR (μV2/Hz): 75.21±11.34 vs. 84.12±11.35 in ground electrode (GND), 72.31±21.67 vs. 88.23±10.25 in reference electrode (REF), 81.34±8.57 vs. 92.41±8.56 in F4, 71.25±5.42 vs. 87.23±5.64 in parietal 3 (P3), 70.12±5.88 vs. 85.67±6.12 in P4; all P < 0.05]. However, there was no significant difference in the mean power of five channels before and after treatment in the control group. There was no significant difference in the HAMD score or NIHSS score before treatment between the two groups. The above scores at 14 days after treatment were significantly lower than before, and the decrease was more significant in the observation group (HAMD score: 4.59±1.06 vs. 10.69±0.97, NIHSS score: 6.81±0.66 vs. 8.45±0.87, both P < 0.01). There was no significant difference in the plasma 5-HT, BDNF or peripheral blood NLR before treatment between the two groups. The above parameters at 14 days after treatment were improved as compared with before, and the levels in the observation group were superior to control group [5-HT (mg/L): 150.25±17.37 vs. 123.34±16.18, BDNF (mg/L): 19.37±2.35 vs. 12.48±2.18, NLR: 4.78±0.83 vs. 5.81±1.17, all P < 0.01].

Conclusions: Both ONDS determined by ultrasound and relative α variation score monitored by electroencephalography changed significantly in the patients with ischemic hypoxic encephalopathy. Neurofeedback training can effectively improve brain function in patients with ischemic hypoxic encephalopathy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Zhonghua wei zhong bing ji jiu yi xue
Zhonghua wei zhong bing ji jiu yi xue Medicine-Critical Care and Intensive Care Medicine
CiteScore
1.00
自引率
0.00%
发文量
42
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信