{"title":"iPSC-based cell replacement therapy: from basic research to clinical application.","authors":"Jun Takahashi","doi":"10.1016/j.jcyt.2025.01.015","DOIUrl":null,"url":null,"abstract":"<p><p>The advancement of induced pluripotent stem cell (iPSC) technology has revolutionized regenerative medicine, enabling breakthroughs in disease modeling, drug discovery, and cell replacement therapies. This review examines the progression of iPSC-based regenerative medicine, focusing on cell replacement therapy and mechanisms like the Replacement Effect, which is crucial for long-term tissue regeneration. Using Parkinson's disease as a key example, it discusses the induction of midbrain dopaminergic neurons from iPSCs and the importance of precise signaling for safety and efficacy. By demonstrating the integration and safety of these cells, animal studies have paved the way for clinical trials. This review highlights the need for strategic collaboration among stakeholders-regulatory authorities, research and medical staff, and industry-to ensure successful clinical applications. iPSC technology's ongoing evolution holds significant promise for broader therapeutic applications and improved patient outcomes.</p>","PeriodicalId":50597,"journal":{"name":"Cytotherapy","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jcyt.2025.01.015","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The advancement of induced pluripotent stem cell (iPSC) technology has revolutionized regenerative medicine, enabling breakthroughs in disease modeling, drug discovery, and cell replacement therapies. This review examines the progression of iPSC-based regenerative medicine, focusing on cell replacement therapy and mechanisms like the Replacement Effect, which is crucial for long-term tissue regeneration. Using Parkinson's disease as a key example, it discusses the induction of midbrain dopaminergic neurons from iPSCs and the importance of precise signaling for safety and efficacy. By demonstrating the integration and safety of these cells, animal studies have paved the way for clinical trials. This review highlights the need for strategic collaboration among stakeholders-regulatory authorities, research and medical staff, and industry-to ensure successful clinical applications. iPSC technology's ongoing evolution holds significant promise for broader therapeutic applications and improved patient outcomes.
期刊介绍:
The journal brings readers the latest developments in the fast moving field of cellular therapy in man. This includes cell therapy for cancer, immune disorders, inherited diseases, tissue repair and regenerative medicine. The journal covers the science, translational development and treatment with variety of cell types including hematopoietic stem cells, immune cells (dendritic cells, NK, cells, T cells, antigen presenting cells) mesenchymal stromal cells, adipose cells, nerve, muscle, vascular and endothelial cells, and induced pluripotential stem cells. We also welcome manuscripts on subcellular derivatives such as exosomes. A specific focus is on translational research that brings cell therapy to the clinic. Cytotherapy publishes original papers, reviews, position papers editorials, commentaries and letters to the editor. We welcome "Protocols in Cytotherapy" bringing standard operating procedure for production specific cell types for clinical use within the reach of the readership.