{"title":"Integrated effects of neighbourhood composition and resource levels on growth of a dominant tree species in a tropical forest.","authors":"Xiaona Shao, Luxiang Lin, Zhiliang Yao, Madhuparna Chatterjee, Xuejun Ge, Lu Jin, Yun Deng, Xiaodong Yang, Shangwen Xia, Feng Liu, Guanghong Cao, Nathan G Swenson","doi":"10.1098/rspb.2024.2373","DOIUrl":null,"url":null,"abstract":"<p><p>Abiotic environments and biotic neighbourhoods interact to influence plant growth and community assembly. However, the nature of this interaction depends very much on how biotic neighbourhoods are measured, including their relatedness to focal plants. In a tropical seasonal rainforest, we examine the growth of a dominant canopy species in response to environmental factors, the densities and relatedness of conspecific and heterospecific neighbours, and their interactions. We find significant environmental effects and conspecific negative density dependence on growth. Furthermore, conspecific neighbour density has stronger negative effects on growth under high light and soil water resource levels, but weaker negative effects under low light and soil water resource levels. In addition, more closely related heterospecifics in the neighbourhood have negative effects on growth under high soil phosphorus availability, but positive effects under low soil phosphorus availability. In contrast, more closely related conspecifics in the neighbourhood have negative effects on growth under low soil potassium availability, but positive effects under high soil potassium availability. Our study emphasizes the importance of both intra- and interspecific neighbourhood composition and their interactions with resource levels for understanding tree growth. This enhances our understanding of the complex processes in community assembly and species coexistence within forest communities.</p>","PeriodicalId":20589,"journal":{"name":"Proceedings of the Royal Society B: Biological Sciences","volume":"292 2041","pages":"20242373"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836702/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rspb.2024.2373","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abiotic environments and biotic neighbourhoods interact to influence plant growth and community assembly. However, the nature of this interaction depends very much on how biotic neighbourhoods are measured, including their relatedness to focal plants. In a tropical seasonal rainforest, we examine the growth of a dominant canopy species in response to environmental factors, the densities and relatedness of conspecific and heterospecific neighbours, and their interactions. We find significant environmental effects and conspecific negative density dependence on growth. Furthermore, conspecific neighbour density has stronger negative effects on growth under high light and soil water resource levels, but weaker negative effects under low light and soil water resource levels. In addition, more closely related heterospecifics in the neighbourhood have negative effects on growth under high soil phosphorus availability, but positive effects under low soil phosphorus availability. In contrast, more closely related conspecifics in the neighbourhood have negative effects on growth under low soil potassium availability, but positive effects under high soil potassium availability. Our study emphasizes the importance of both intra- and interspecific neighbourhood composition and their interactions with resource levels for understanding tree growth. This enhances our understanding of the complex processes in community assembly and species coexistence within forest communities.
期刊介绍:
Proceedings B is the Royal Society’s flagship biological research journal, accepting original articles and reviews of outstanding scientific importance and broad general interest. The main criteria for acceptance are that a study is novel, and has general significance to biologists. Articles published cover a wide range of areas within the biological sciences, many have relevance to organisms and the environments in which they live. The scope includes, but is not limited to, ecology, evolution, behavior, health and disease epidemiology, neuroscience and cognition, behavioral genetics, development, biomechanics, paleontology, comparative biology, molecular ecology and evolution, and global change biology.