[Characteristics of changes in non-invasive hemodynamic parameters in neonates with septic shock].

Q3 Medicine
Xiaoyi Fang, Jinzhi Xie, Airun Zhang, Guanming Li, Silan Yang, Xiaoling Huang, Jizhong Guo, Niyang Lin
{"title":"[Characteristics of changes in non-invasive hemodynamic parameters in neonates with septic shock].","authors":"Xiaoyi Fang, Jinzhi Xie, Airun Zhang, Guanming Li, Silan Yang, Xiaoling Huang, Jizhong Guo, Niyang Lin","doi":"10.3760/cma.j.cn121430-20240312-00213","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To observe the characteristics of changes in non-invasive hemodynamic parameters in neonates with septic shock so as to provide clinical reference for diagnosis and treatment.</p><p><strong>Methods: </strong>A observational study was conducted. The neonates with sepsis complicated with septic shock or not admitted to neonatal intensive care unit (NICU) of the First Affiliated Hospital of Shantou University Medical College were enrolled as the study subjects, who were divided into preterm infant (< 37 weeks) and full-term infant (≥ 37 weeks) according to the gestational age. Healthy full-term infants and hemodynamically stable preterm infants transferring to NICU after birth were enrolled as controls. Electronic cardiometry (EC) was used to measure hemodynamic parameters, including heart rate (HR), mean arterial pressure (MAP), stroke volume (SV), stroke volume index (SVI), cardiac output (CO), cardiac index (CI), systemic vascular resistance (SVR) and systemic vascular resistance index (SVRI), before treatment in the septic shock group, at the time of diagnosis of sepsis in the sepsis without shock group, and before the discharge from the obstetric department or on the day of transferring to NICU in the control group.</p><p><strong>Results: </strong>Finally, 113 neonates with complete data and parental consent for non-invasive hemodynamic monitoring were enrolled, including 32 cases in the septic shock group, 25 cases in the sepsis without shock group and 56 cases in the control group. In the septic shock group, there were 17 cases at the compensated stage and 15 cases at the decompensated stage. There were 21 full-term infants (20 cured or improved and 1 died) and 11 premature infants (7 cured or improved and 4 died), with the mortality of 15.62% (5/32). There were 18 full-term infants and 7 premature infants in the sepsis without shock group and all cured or improved without death. The control group included 28 full-term infants and 28 premature infants transferring to NICU after birth. Non-invasive hemodynamic parameter analysis showed that SV, SVI, CO and CI of full-term infants in the septic shock group were significantly lower than those in the sepsis without shock group and control group [SV (mL): 3.52±0.99 vs. 5.79±1.32, 5.22±1.02, SVI (mL/m<sup>2</sup>): 16.80 (15.05, 19.65) vs. 27.00 (22.00, 32.00), 27.00 (23.00, 29.75), CO (L/min): 0.52±0.17 vs. 0.80±0.14, 0.72±0.12, CI (mL×s<sup>-1</sup>×m<sup>-2</sup>): 40.00 (36.67, 49.18) vs. 62.51 (56.34, 70.85), 60.01 (53.34, 69.68), all P < 0.05], while SVR and SVRI were significantly higher than those in the sepsis without shock group and control group [SVR (kPa×s×L<sup>-1</sup>): 773.46±291.96 vs. 524.17±84.76, 549.38±72.36, SVRI (kPa×s×L<sup>-1</sup>×m<sup>-2</sup>): 149.27±51.76 vs. 108.12±12.66, 107.81±11.87, all P < 0.05]. MAP, SV, SVI, CO and CI of preterm infants in the septic shock group were significantly lower than those in the control group [MAP (mmHg, 1 mmHg ≈ 0.133 kPa): 38.55±10.48 vs. 47.46±2.85, SV (mL): 2.45 (1.36, 3.58) vs. 3.96 (3.56, 4.49), SVI (mL/m<sup>2</sup>): 17.60 (14.20, 25.00) vs. 25.50 (24.00, 29.00), CO (L/min): 0.32 (0.24, 0.63) vs. 0.56 (0.49, 0.63), CI (mL×s<sup>-1</sup>×m<sup>-2</sup>): 40.01 (33.34, 53.34) vs. 61.68 (56.68, 63.35), all P < 0.05], while SVR and SVRI were similar to the control group [SVR (kPa×s×L<sup>-1</sup>): 1 082.88±689.39 vs. 656.63±118.83, SVRI (kPa×s×L<sup>-1</sup>×m<sup>-2</sup>): 126.00±61.50 vs. 102.37±11.68, both P > 0.05]. Further analysis showed that SV, SVI and CI of neonates at the compensation stage in the septic shock group were significantly lower than those in the control group [SV (mL): 3.60±1.29 vs. 4.73±1.15, SVI (mL/m<sup>2</sup>): 19.20±8.33 vs. 26.34±3.91, CI (mL×s<sup>-1</sup>×m<sup>-2</sup>): 46.51±20.34 vs. 61.01±7.67, all P < 0.05], while MAP, SVR and SVRI were significantly higher than those in the control group [MAP (mmHg): 52.06±8.61 vs. 48.54±3.21, SVR (kPa×s×L<sup>-1</sup>): 874.95±318.70 vs. 603.01±111.49, SVRI (kPa×s×L<sup>-1</sup>×m<sup>-2</sup>): 165.07±54.90 vs. 105.09±11.99, all P < 0.05]; MAP, SV, SVI, CO and CI of neonates at the decompensated stage in the septic shock group were significantly lower than those in the control group [MAP (mmHg): 35.13±6.08 vs. 48.54±3.21, SV (mL): 2.89±1.17 vs. 4.73±1.15, SVI (mL/m<sup>2</sup>): 18.50±4.99 vs. 26.34±3.91, CO (L/min): 0.41±0.19 vs. 0.65±0.15, CI (mL×s<sup>-1</sup>×m<sup>-2</sup>): 43.34±14.17 vs. 61.01±7.67, all P < 0.05], while SVR and SVRI were similar to the control group [SVR (kPa×s×L<sup>-1</sup>): 885.49±628.04 vs. 603.01±111.49, SVRI (kPa×s×L<sup>-1</sup>×m<sup>-2</sup>): 114.29±43.54 vs. 105.09±11.99, both P > 0.05].</p><p><strong>Conclusions: </strong>Full-term infant with septic shock exhibit a low cardiac output, high vascular resistance hemodynamic pattern, while preterm infant with septic shock show low cardiac output and normal vascular resistance. At the compensated stage the hemodynamic change is low output and high resistance type, while at the decompensated stage it is low output and normal resistance type. Non-invasive hemodynamic monitoring can assist in the identification of neonatal septic shock and provide basis for clinical diagnosis and treatment.</p>","PeriodicalId":24079,"journal":{"name":"Zhonghua wei zhong bing ji jiu yi xue","volume":"37 1","pages":"29-35"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhonghua wei zhong bing ji jiu yi xue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3760/cma.j.cn121430-20240312-00213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To observe the characteristics of changes in non-invasive hemodynamic parameters in neonates with septic shock so as to provide clinical reference for diagnosis and treatment.

Methods: A observational study was conducted. The neonates with sepsis complicated with septic shock or not admitted to neonatal intensive care unit (NICU) of the First Affiliated Hospital of Shantou University Medical College were enrolled as the study subjects, who were divided into preterm infant (< 37 weeks) and full-term infant (≥ 37 weeks) according to the gestational age. Healthy full-term infants and hemodynamically stable preterm infants transferring to NICU after birth were enrolled as controls. Electronic cardiometry (EC) was used to measure hemodynamic parameters, including heart rate (HR), mean arterial pressure (MAP), stroke volume (SV), stroke volume index (SVI), cardiac output (CO), cardiac index (CI), systemic vascular resistance (SVR) and systemic vascular resistance index (SVRI), before treatment in the septic shock group, at the time of diagnosis of sepsis in the sepsis without shock group, and before the discharge from the obstetric department or on the day of transferring to NICU in the control group.

Results: Finally, 113 neonates with complete data and parental consent for non-invasive hemodynamic monitoring were enrolled, including 32 cases in the septic shock group, 25 cases in the sepsis without shock group and 56 cases in the control group. In the septic shock group, there were 17 cases at the compensated stage and 15 cases at the decompensated stage. There were 21 full-term infants (20 cured or improved and 1 died) and 11 premature infants (7 cured or improved and 4 died), with the mortality of 15.62% (5/32). There were 18 full-term infants and 7 premature infants in the sepsis without shock group and all cured or improved without death. The control group included 28 full-term infants and 28 premature infants transferring to NICU after birth. Non-invasive hemodynamic parameter analysis showed that SV, SVI, CO and CI of full-term infants in the septic shock group were significantly lower than those in the sepsis without shock group and control group [SV (mL): 3.52±0.99 vs. 5.79±1.32, 5.22±1.02, SVI (mL/m2): 16.80 (15.05, 19.65) vs. 27.00 (22.00, 32.00), 27.00 (23.00, 29.75), CO (L/min): 0.52±0.17 vs. 0.80±0.14, 0.72±0.12, CI (mL×s-1×m-2): 40.00 (36.67, 49.18) vs. 62.51 (56.34, 70.85), 60.01 (53.34, 69.68), all P < 0.05], while SVR and SVRI were significantly higher than those in the sepsis without shock group and control group [SVR (kPa×s×L-1): 773.46±291.96 vs. 524.17±84.76, 549.38±72.36, SVRI (kPa×s×L-1×m-2): 149.27±51.76 vs. 108.12±12.66, 107.81±11.87, all P < 0.05]. MAP, SV, SVI, CO and CI of preterm infants in the septic shock group were significantly lower than those in the control group [MAP (mmHg, 1 mmHg ≈ 0.133 kPa): 38.55±10.48 vs. 47.46±2.85, SV (mL): 2.45 (1.36, 3.58) vs. 3.96 (3.56, 4.49), SVI (mL/m2): 17.60 (14.20, 25.00) vs. 25.50 (24.00, 29.00), CO (L/min): 0.32 (0.24, 0.63) vs. 0.56 (0.49, 0.63), CI (mL×s-1×m-2): 40.01 (33.34, 53.34) vs. 61.68 (56.68, 63.35), all P < 0.05], while SVR and SVRI were similar to the control group [SVR (kPa×s×L-1): 1 082.88±689.39 vs. 656.63±118.83, SVRI (kPa×s×L-1×m-2): 126.00±61.50 vs. 102.37±11.68, both P > 0.05]. Further analysis showed that SV, SVI and CI of neonates at the compensation stage in the septic shock group were significantly lower than those in the control group [SV (mL): 3.60±1.29 vs. 4.73±1.15, SVI (mL/m2): 19.20±8.33 vs. 26.34±3.91, CI (mL×s-1×m-2): 46.51±20.34 vs. 61.01±7.67, all P < 0.05], while MAP, SVR and SVRI were significantly higher than those in the control group [MAP (mmHg): 52.06±8.61 vs. 48.54±3.21, SVR (kPa×s×L-1): 874.95±318.70 vs. 603.01±111.49, SVRI (kPa×s×L-1×m-2): 165.07±54.90 vs. 105.09±11.99, all P < 0.05]; MAP, SV, SVI, CO and CI of neonates at the decompensated stage in the septic shock group were significantly lower than those in the control group [MAP (mmHg): 35.13±6.08 vs. 48.54±3.21, SV (mL): 2.89±1.17 vs. 4.73±1.15, SVI (mL/m2): 18.50±4.99 vs. 26.34±3.91, CO (L/min): 0.41±0.19 vs. 0.65±0.15, CI (mL×s-1×m-2): 43.34±14.17 vs. 61.01±7.67, all P < 0.05], while SVR and SVRI were similar to the control group [SVR (kPa×s×L-1): 885.49±628.04 vs. 603.01±111.49, SVRI (kPa×s×L-1×m-2): 114.29±43.54 vs. 105.09±11.99, both P > 0.05].

Conclusions: Full-term infant with septic shock exhibit a low cardiac output, high vascular resistance hemodynamic pattern, while preterm infant with septic shock show low cardiac output and normal vascular resistance. At the compensated stage the hemodynamic change is low output and high resistance type, while at the decompensated stage it is low output and normal resistance type. Non-invasive hemodynamic monitoring can assist in the identification of neonatal septic shock and provide basis for clinical diagnosis and treatment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Zhonghua wei zhong bing ji jiu yi xue
Zhonghua wei zhong bing ji jiu yi xue Medicine-Critical Care and Intensive Care Medicine
CiteScore
1.00
自引率
0.00%
发文量
42
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信