Robust p53 phenotypes and prospective downstream targets in telomerase-immortalized human cells.

Q2 Medicine
Jessica J Miciak, Lucy Petrova, Rhythm Sajwan, Aditya Pandya, Mikayla Deckard, Andrew J Munoz, Fred Bunz
{"title":"Robust p53 phenotypes and prospective downstream targets in telomerase-immortalized human cells.","authors":"Jessica J Miciak, Lucy Petrova, Rhythm Sajwan, Aditya Pandya, Mikayla Deckard, Andrew J Munoz, Fred Bunz","doi":"10.18632/oncotarget.28690","DOIUrl":null,"url":null,"abstract":"<p><p>Cancers that retain wild type <i>TP53</i> presumably harbor other clonal alterations that permitted their precursors to bypass p53-mediated growth suppression. Consequently, studies that employ <i>TP53</i>-wild type cancer cells and their isogenic derivatives may systematically fail to appreciate the full scope of p53 functionality. Several <i>TP53</i> phenotypes are known to be absent in the widely used isogenic HCT116 colorectal cancer (CRC) model, which originated from a tumor that had retained wild type <i>TP53</i>. In contrast, we show that restoration of p53 in the <i>TP53</i>-mutant CRC cell line DLD-1 impeded cell proliferation, increased levels of senescence and sensitized cells to ionizing radiation (IR). To study p53 in a non-cancer context, we disrupted <i>TP53</i> in hTERT-RPE1 cells. Derived from primary cells that were immortalized <i>in vitro</i>, hTERT-RPE1 expressed striking p53-dependent phenotypes and appeared to select for p53 loss during routine culture. hTERT-RPE1 expressed a p53-responsive transcriptome that was highly representative of diverse experimental systems. We discovered several novel downstream p53 targets of potential clinical relevance including <i>ALDH3A1</i>, which is involved in the detoxification of aldehydes and the metabolism of reactive oxygen species, and <i>nectin cell adhesion molecule 4</i> (<i>NECTIN4</i>) which encodes a secreted surface protein that is overexpressed in many tumors.</p>","PeriodicalId":19499,"journal":{"name":"Oncotarget","volume":"16 ","pages":"79-100"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837864/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncotarget","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/oncotarget.28690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Cancers that retain wild type TP53 presumably harbor other clonal alterations that permitted their precursors to bypass p53-mediated growth suppression. Consequently, studies that employ TP53-wild type cancer cells and their isogenic derivatives may systematically fail to appreciate the full scope of p53 functionality. Several TP53 phenotypes are known to be absent in the widely used isogenic HCT116 colorectal cancer (CRC) model, which originated from a tumor that had retained wild type TP53. In contrast, we show that restoration of p53 in the TP53-mutant CRC cell line DLD-1 impeded cell proliferation, increased levels of senescence and sensitized cells to ionizing radiation (IR). To study p53 in a non-cancer context, we disrupted TP53 in hTERT-RPE1 cells. Derived from primary cells that were immortalized in vitro, hTERT-RPE1 expressed striking p53-dependent phenotypes and appeared to select for p53 loss during routine culture. hTERT-RPE1 expressed a p53-responsive transcriptome that was highly representative of diverse experimental systems. We discovered several novel downstream p53 targets of potential clinical relevance including ALDH3A1, which is involved in the detoxification of aldehydes and the metabolism of reactive oxygen species, and nectin cell adhesion molecule 4 (NECTIN4) which encodes a secreted surface protein that is overexpressed in many tumors.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Oncotarget
Oncotarget Oncogenes-CELL BIOLOGY
CiteScore
6.60
自引率
0.00%
发文量
129
审稿时长
1.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信