Untargeted metabolomics unveils critical metabolic signatures in novel phenotypes of acute ischemic stroke.

IF 3.2 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Yao Jiang, Qian Wu, Yingqiang Dang, Lingling Peng, Ling Meng, Chongge You
{"title":"Untargeted metabolomics unveils critical metabolic signatures in novel phenotypes of acute ischemic stroke.","authors":"Yao Jiang, Qian Wu, Yingqiang Dang, Lingling Peng, Ling Meng, Chongge You","doi":"10.1007/s11011-024-01451-3","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to identify metabolic footprints associated with distinct phenotypes of acute ischemic stroke (AIS) using untargeted metabolomics. We included 20 samples each from AIS phenotype A (n = 251), B (n = 213), and C (n = 43) groups, along with 20 age- and gender-matched healthy controls (HCs). Plasma metabolic profiles were analyzed using liquid chromatography-mass spectrometry (LC-MS). Weighted gene correlation network analysis (WGCNA) evaluated associations between metabolite clusters and clinical traits, including the National Institutes of Health Stroke Scale (NIHSS) and the modified Rankin Scale (mRS). We identified three, five, and six key differential metabolites for diagnosing phenotypes A, B, and C, respectively, demonstrating high diagnostic performance. These metabolites were focused on fatty acids, sex hormones, amino acids, and their derivatives. WGCNA identified 12 core metabolites involved in phenotype progression. Notably, phenylalanylphenylalanine and phenylalanylleucine were inversely correlated with disease severity and disability. Metabolites related to energy supply and inflammation were common across phenotypes, with additional changes in ionic homeostasis in phenotype A and decreased neurotransmitter release in phenotype C. Biosynthesis of unsaturated fatty acids and the pentose phosphate pathway (PPP) were relevant across all phenotypes, while the folate biosynthesis pathway was linked to phenotype C and clinical scales. Key metabolites, including phenylalanylphenylalanine and phenylalanylleucine, and pathways such as folate biosynthesis, significantly contribute to AIS severity and differentiation of phenotypes. These findings offer new insights into the pathogenesis and mechanisms underlying AIS phenotypes.</p>","PeriodicalId":18685,"journal":{"name":"Metabolic brain disease","volume":"40 3","pages":"130"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic brain disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11011-024-01451-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to identify metabolic footprints associated with distinct phenotypes of acute ischemic stroke (AIS) using untargeted metabolomics. We included 20 samples each from AIS phenotype A (n = 251), B (n = 213), and C (n = 43) groups, along with 20 age- and gender-matched healthy controls (HCs). Plasma metabolic profiles were analyzed using liquid chromatography-mass spectrometry (LC-MS). Weighted gene correlation network analysis (WGCNA) evaluated associations between metabolite clusters and clinical traits, including the National Institutes of Health Stroke Scale (NIHSS) and the modified Rankin Scale (mRS). We identified three, five, and six key differential metabolites for diagnosing phenotypes A, B, and C, respectively, demonstrating high diagnostic performance. These metabolites were focused on fatty acids, sex hormones, amino acids, and their derivatives. WGCNA identified 12 core metabolites involved in phenotype progression. Notably, phenylalanylphenylalanine and phenylalanylleucine were inversely correlated with disease severity and disability. Metabolites related to energy supply and inflammation were common across phenotypes, with additional changes in ionic homeostasis in phenotype A and decreased neurotransmitter release in phenotype C. Biosynthesis of unsaturated fatty acids and the pentose phosphate pathway (PPP) were relevant across all phenotypes, while the folate biosynthesis pathway was linked to phenotype C and clinical scales. Key metabolites, including phenylalanylphenylalanine and phenylalanylleucine, and pathways such as folate biosynthesis, significantly contribute to AIS severity and differentiation of phenotypes. These findings offer new insights into the pathogenesis and mechanisms underlying AIS phenotypes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Metabolic brain disease
Metabolic brain disease 医学-内分泌学与代谢
CiteScore
5.90
自引率
5.60%
发文量
248
审稿时长
6-12 weeks
期刊介绍: Metabolic Brain Disease serves as a forum for the publication of outstanding basic and clinical papers on all metabolic brain disease, including both human and animal studies. The journal publishes papers on the fundamental pathogenesis of these disorders and on related experimental and clinical techniques and methodologies. Metabolic Brain Disease is directed to physicians, neuroscientists, internists, psychiatrists, neurologists, pathologists, and others involved in the research and treatment of a broad range of metabolic brain disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信