Artificial Intelligence Methods for Diagnostic and Decision-Making Assistance in Chronic Wounds: A Systematic Review.

IF 3.5 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
David Reifs Jiménez, Lorena Casanova-Lozano, Sergi Grau-Carrión, Ramon Reig-Bolaño
{"title":"Artificial Intelligence Methods for Diagnostic and Decision-Making Assistance in Chronic Wounds: A Systematic Review.","authors":"David Reifs Jiménez, Lorena Casanova-Lozano, Sergi Grau-Carrión, Ramon Reig-Bolaño","doi":"10.1007/s10916-025-02153-8","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic wounds, which take over four weeks to heal, are a major global health issue linked to conditions such as diabetes, venous insufficiency, arterial diseases, and pressure ulcers. These wounds cause pain, reduce quality of life, and impose significant economic burdens. This systematic review explores the impact of technological advancements on the diagnosis of chronic wounds, focusing on how computational methods in wound image and data analysis improve diagnostic precision and patient outcomes. A literature search was conducted in databases including ACM, IEEE, PubMed, Scopus, and Web of Science, covering studies from 2013 to 2023. The focus was on articles applying complex computational techniques to analyze chronic wound images and clinical data. Exclusion criteria were non-image samples, review articles, and non-English or non-Spanish texts. From 2,791 articles identified, 93 full-text studies were selected for final analysis. The review identified significant advancements in tissue classification, wound measurement, segmentation, prediction of wound aetiology, risk indicators, and healing potential. The use of image-based and data-driven methods has proven to enhance diagnostic accuracy and treatment efficiency in chronic wound care. The integration of technology into chronic wound diagnosis has shown a transformative effect, improving diagnostic capabilities, patient care, and reducing healthcare costs. Continued research and innovation in computational techniques are essential to unlock their full potential in managing chronic wounds effectively.</p>","PeriodicalId":16338,"journal":{"name":"Journal of Medical Systems","volume":"49 1","pages":"29"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10916-025-02153-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic wounds, which take over four weeks to heal, are a major global health issue linked to conditions such as diabetes, venous insufficiency, arterial diseases, and pressure ulcers. These wounds cause pain, reduce quality of life, and impose significant economic burdens. This systematic review explores the impact of technological advancements on the diagnosis of chronic wounds, focusing on how computational methods in wound image and data analysis improve diagnostic precision and patient outcomes. A literature search was conducted in databases including ACM, IEEE, PubMed, Scopus, and Web of Science, covering studies from 2013 to 2023. The focus was on articles applying complex computational techniques to analyze chronic wound images and clinical data. Exclusion criteria were non-image samples, review articles, and non-English or non-Spanish texts. From 2,791 articles identified, 93 full-text studies were selected for final analysis. The review identified significant advancements in tissue classification, wound measurement, segmentation, prediction of wound aetiology, risk indicators, and healing potential. The use of image-based and data-driven methods has proven to enhance diagnostic accuracy and treatment efficiency in chronic wound care. The integration of technology into chronic wound diagnosis has shown a transformative effect, improving diagnostic capabilities, patient care, and reducing healthcare costs. Continued research and innovation in computational techniques are essential to unlock their full potential in managing chronic wounds effectively.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Systems
Journal of Medical Systems 医学-卫生保健
CiteScore
11.60
自引率
1.90%
发文量
83
审稿时长
4.8 months
期刊介绍: Journal of Medical Systems provides a forum for the presentation and discussion of the increasingly extensive applications of new systems techniques and methods in hospital clinic and physician''s office administration; pathology radiology and pharmaceutical delivery systems; medical records storage and retrieval; and ancillary patient-support systems. The journal publishes informative articles essays and studies across the entire scale of medical systems from large hospital programs to novel small-scale medical services. Education is an integral part of this amalgamation of sciences and selected articles are published in this area. Since existing medical systems are constantly being modified to fit particular circumstances and to solve specific problems the journal includes a special section devoted to status reports on current installations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信