Development and Validation of Prediction Models for Perceived and Unmet Mental Health Needs in the Canadian General Population: Model-Based Synthetic Estimation Study.

IF 3.5 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Jianli Wang, Heather Orpana, André Carrington, George Kephart, Helen-Maria Vasiliadis, Benjamin Leikin
{"title":"Development and Validation of Prediction Models for Perceived and Unmet Mental Health Needs in the Canadian General Population: Model-Based Synthetic Estimation Study.","authors":"Jianli Wang, Heather Orpana, André Carrington, George Kephart, Helen-Maria Vasiliadis, Benjamin Leikin","doi":"10.2196/66056","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Research has shown that perceptions of a mental health need are closely associated with service demands and are an important dimension in needs assessment. Perceived and unmet mental health needs are important factors in the decision-making process regarding mental health services planning and resources allocation. However, few prediction tools are available to be used by policy and decision makers to forecast perceived and unmet mental health needs at the population level.</p><p><strong>Objective: </strong>We aim to develop prediction models to forecast perceived and unmet mental health needs at the provincial and health regional levels in Canada.</p><p><strong>Methods: </strong>Data from 2018, 2019, and 2020 Canadian Community Health Survey and Canadian Urban Environment were used (n=65,000 each year). Perceived and unmet mental health needs were measured by the Perceived Needs for Care Questionnaire. Using the 2018 dataset, we developed the prediction models through the application of regression synthetic estimation for the Atlantic, Central, and Western regions. The models were validated in the 2019 and 2020 datasets at the provincial level and in 10 randomly selected health regions by comparing the observed and predicted proportions of the outcomes.</p><p><strong>Results: </strong>In 2018, a total of 17.82% of the participants reported perceived mental health need and 3.81% reported unmet mental health need. The proportions were similar in 2019 (18.04% and 3.91%) and in 2020 (18.1% and 3.92%). Sex, age, self-reported mental health, physician diagnosed mood and anxiety disorders, self-reported life stress and life satisfaction were the predictors in the 3 regional models. The individual based models had good discriminative power with C statistics over 0.83 and good calibration. Applying the synthetic models in 2019 and 2020 data, the models had the best performance in Ontario, Quebec, and British Columbia; the absolute differences between observed and predicted proportions were less than 1%. The absolute differences between the predicted and observed proportion of perceived mental health needs in Newfoundland and Labrador (-4.16% in 2020) and Prince Edward Island (4.58% in 2019) were larger than those in other provinces. When applying the models in the 10 selected health regions, the models calibrated well in the health regions in Ontario and in Quebec; the absolute differences in perceived mental health needs ranged from 0.23% to 2.34%.</p><p><strong>Conclusions: </strong>Predicting perceived and unmet mental health at the population level is feasible. There are common factors that contribute to perceived and unmet mental health needs across regions, at different magnitudes, due to different population characteristics. Therefore, predicting perceived and unmet mental health needs should be region specific. The performance of the models at the provincial and health regional levels may be affected by population size.</p>","PeriodicalId":14765,"journal":{"name":"JMIR Public Health and Surveillance","volume":"11 ","pages":"e66056"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864089/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Public Health and Surveillance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/66056","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Research has shown that perceptions of a mental health need are closely associated with service demands and are an important dimension in needs assessment. Perceived and unmet mental health needs are important factors in the decision-making process regarding mental health services planning and resources allocation. However, few prediction tools are available to be used by policy and decision makers to forecast perceived and unmet mental health needs at the population level.

Objective: We aim to develop prediction models to forecast perceived and unmet mental health needs at the provincial and health regional levels in Canada.

Methods: Data from 2018, 2019, and 2020 Canadian Community Health Survey and Canadian Urban Environment were used (n=65,000 each year). Perceived and unmet mental health needs were measured by the Perceived Needs for Care Questionnaire. Using the 2018 dataset, we developed the prediction models through the application of regression synthetic estimation for the Atlantic, Central, and Western regions. The models were validated in the 2019 and 2020 datasets at the provincial level and in 10 randomly selected health regions by comparing the observed and predicted proportions of the outcomes.

Results: In 2018, a total of 17.82% of the participants reported perceived mental health need and 3.81% reported unmet mental health need. The proportions were similar in 2019 (18.04% and 3.91%) and in 2020 (18.1% and 3.92%). Sex, age, self-reported mental health, physician diagnosed mood and anxiety disorders, self-reported life stress and life satisfaction were the predictors in the 3 regional models. The individual based models had good discriminative power with C statistics over 0.83 and good calibration. Applying the synthetic models in 2019 and 2020 data, the models had the best performance in Ontario, Quebec, and British Columbia; the absolute differences between observed and predicted proportions were less than 1%. The absolute differences between the predicted and observed proportion of perceived mental health needs in Newfoundland and Labrador (-4.16% in 2020) and Prince Edward Island (4.58% in 2019) were larger than those in other provinces. When applying the models in the 10 selected health regions, the models calibrated well in the health regions in Ontario and in Quebec; the absolute differences in perceived mental health needs ranged from 0.23% to 2.34%.

Conclusions: Predicting perceived and unmet mental health at the population level is feasible. There are common factors that contribute to perceived and unmet mental health needs across regions, at different magnitudes, due to different population characteristics. Therefore, predicting perceived and unmet mental health needs should be region specific. The performance of the models at the provincial and health regional levels may be affected by population size.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.70
自引率
2.40%
发文量
136
审稿时长
12 weeks
期刊介绍: JMIR Public Health & Surveillance (JPHS) is a renowned scholarly journal indexed on PubMed. It follows a rigorous peer-review process and covers a wide range of disciplines. The journal distinguishes itself by its unique focus on the intersection of technology and innovation in the field of public health. JPHS delves into diverse topics such as public health informatics, surveillance systems, rapid reports, participatory epidemiology, infodemiology, infoveillance, digital disease detection, digital epidemiology, electronic public health interventions, mass media and social media campaigns, health communication, and emerging population health analysis systems and tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信