{"title":"Effect of <i>Cardamine violifolia</i> on muscle protein degradation and anti-oxidative capacity in weaned piglets after Lipopolysaccharide challenge.","authors":"Nianbang Wu, Shunkang Li, Yanling Kuang, Wensheng He, Huiling Zhu, Qingyu Gao, Liping Liu, Shuiyuan Cheng, Yulan Liu, Xin Cong, Dan Wang","doi":"10.1177/17534259251322589","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate the impact of <i>Cardamine violifolia</i> on muscle protein degradation, the inflammatory response and antioxidant function in weaned piglets following LPS challenge. Twenty-four weaned piglets were used in a 2 × 2 factorial experiment with dietary treatment (sodium selenite or <i>Cardamine violifolia</i>) and LPS challenge. After 28 days of feeding, pigs were injected intraperitoneally with 100 μg/kg LPS or saline. Dietary supplementation with <i>Cardamine violifolia</i> mitigated the reduction in insulin and growth hormone levels induced by LPS. It also curbed the LPS-induced elevation of plasma glucagon, urea nitrogen, and creatinine concentrations. <i>Cardamine violifolia</i> reduced muscle damage caused by LPS, as evidenced by increased protein content and protein/DNA ratio and decreased TNF-α and IL-1β mRNA expression. Furthermore, <i>Cardamine violifolia</i> modulated the expression of FOXO1, FOXO4, and MuRF1 in muscle, indicative of the protective effect against muscle protein degradation. Enhanced muscle antioxidant function was observed in the form of increased T-AOC, reduced MDA concentration, and decreased mRNA expression of GPX3, DIO3, TXNRD1, SELENOS, SELENOI, SELENOO, and SEPHS2 in LPS-treated piglets. The findings suggest that <i>Cardamine violifolia</i> supplementation can effectively alleviate muscle protein degradation induced by LPS and enhance the antioxidant capacity in piglets.</p>","PeriodicalId":13676,"journal":{"name":"Innate Immunity","volume":"31 ","pages":"17534259251322589"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837137/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innate Immunity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/17534259251322589","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to investigate the impact of Cardamine violifolia on muscle protein degradation, the inflammatory response and antioxidant function in weaned piglets following LPS challenge. Twenty-four weaned piglets were used in a 2 × 2 factorial experiment with dietary treatment (sodium selenite or Cardamine violifolia) and LPS challenge. After 28 days of feeding, pigs were injected intraperitoneally with 100 μg/kg LPS or saline. Dietary supplementation with Cardamine violifolia mitigated the reduction in insulin and growth hormone levels induced by LPS. It also curbed the LPS-induced elevation of plasma glucagon, urea nitrogen, and creatinine concentrations. Cardamine violifolia reduced muscle damage caused by LPS, as evidenced by increased protein content and protein/DNA ratio and decreased TNF-α and IL-1β mRNA expression. Furthermore, Cardamine violifolia modulated the expression of FOXO1, FOXO4, and MuRF1 in muscle, indicative of the protective effect against muscle protein degradation. Enhanced muscle antioxidant function was observed in the form of increased T-AOC, reduced MDA concentration, and decreased mRNA expression of GPX3, DIO3, TXNRD1, SELENOS, SELENOI, SELENOO, and SEPHS2 in LPS-treated piglets. The findings suggest that Cardamine violifolia supplementation can effectively alleviate muscle protein degradation induced by LPS and enhance the antioxidant capacity in piglets.
期刊介绍:
Innate Immunity is a highly ranked, peer-reviewed scholarly journal and is the official journal of the International Endotoxin & Innate Immunity Society (IEIIS). The journal welcomes manuscripts from researchers actively working on all aspects of innate immunity including biologically active bacterial, viral, fungal, parasitic, and plant components, as well as relevant cells, their receptors, signaling pathways, and induced mediators. The aim of the Journal is to provide a single, interdisciplinary forum for the dissemination of new information on innate immunity in humans, animals, and plants to researchers. The Journal creates a vehicle for the publication of articles encompassing all areas of research, basic, applied, and clinical. The subject areas of interest include, but are not limited to, research in biochemistry, biophysics, cell biology, chemistry, clinical medicine, immunology, infectious disease, microbiology, molecular biology, and pharmacology.