Bo Liu, Weili Liu, Hongbo Li, Nailiang Zhai, Changjun Lv, Xiaodong Song, Shuanying Yang
{"title":"circ0066187 promotes pulmonary fibrogenesis through targeting STAT3-mediated metabolism signal pathway.","authors":"Bo Liu, Weili Liu, Hongbo Li, Nailiang Zhai, Changjun Lv, Xiaodong Song, Shuanying Yang","doi":"10.1007/s00018-025-05613-z","DOIUrl":null,"url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial pneumonia, with increasing incidence and prevalence. One of the cellular characteristics is the differentiation of fibroblasts to myofibroblasts. However, the metabolic-related signaling pathway regulated by circular RNAs (circRNAs) during this process remains unclear. Here, we demonstrated that circ0066187 promoted fibroblast-to-myofibroblast differentiation by metabolic-related signaling pathway. Mechanism analysis research identified that circ0066187 directly targeted signal transducer and activator of transcription 3 (STAT3)-mediated metabolism signal pathway to enhance fibroblast-to-myofibroblast differentiation by sponging miR-29b-2-5p, resulting in pulmonary fibrosis. Integrative multi-omics analysis of metabolomics and proteomics revealed three pathways co-enriched in proteomics and metabolomics, namely, Protein digestion and absorption, PI3K-Akt signaling pathway, and FoxO signaling pathway. In these three signaling pathways, seven differentially expressed metabolites such as L-glutamine, L-proline, adenosine monophosphate (AMP), L-arginine, L-phenylalanine, L-lysine and L-tryptophan, and six differentially expressed proteins containing dipeptidyl peptidase-4 (DPP4), cyclin D1 (CCND1), cyclin-dependent kinase 2 (CDK2), fibroblast growth factor 2 (FGF2), collagen type VI alpha 1 (COL6A1) and superoxide dismutase 2 (SOD2) were co-enriched. Gain-and loss-of-function studies and rescue experiments were performed to verify that circ0066187 promoted STAT3 expression by inhibiting miR-29b-2-5p expression to control the above metabolites and proteins. As a result, these metabolites and proteins provided the material basis and energy requirements for the progression of pulmonary fibrosis. In conclusion, circ0066187 can function as a profibrotic metabolism-related factor, and interference with circ0066187 can prevent pulmonary fibrosis. The finding supported that circ0066187 can be a metabolism-related therapeutic target for IPF treatment.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"79"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839971/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-025-05613-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial pneumonia, with increasing incidence and prevalence. One of the cellular characteristics is the differentiation of fibroblasts to myofibroblasts. However, the metabolic-related signaling pathway regulated by circular RNAs (circRNAs) during this process remains unclear. Here, we demonstrated that circ0066187 promoted fibroblast-to-myofibroblast differentiation by metabolic-related signaling pathway. Mechanism analysis research identified that circ0066187 directly targeted signal transducer and activator of transcription 3 (STAT3)-mediated metabolism signal pathway to enhance fibroblast-to-myofibroblast differentiation by sponging miR-29b-2-5p, resulting in pulmonary fibrosis. Integrative multi-omics analysis of metabolomics and proteomics revealed three pathways co-enriched in proteomics and metabolomics, namely, Protein digestion and absorption, PI3K-Akt signaling pathway, and FoxO signaling pathway. In these three signaling pathways, seven differentially expressed metabolites such as L-glutamine, L-proline, adenosine monophosphate (AMP), L-arginine, L-phenylalanine, L-lysine and L-tryptophan, and six differentially expressed proteins containing dipeptidyl peptidase-4 (DPP4), cyclin D1 (CCND1), cyclin-dependent kinase 2 (CDK2), fibroblast growth factor 2 (FGF2), collagen type VI alpha 1 (COL6A1) and superoxide dismutase 2 (SOD2) were co-enriched. Gain-and loss-of-function studies and rescue experiments were performed to verify that circ0066187 promoted STAT3 expression by inhibiting miR-29b-2-5p expression to control the above metabolites and proteins. As a result, these metabolites and proteins provided the material basis and energy requirements for the progression of pulmonary fibrosis. In conclusion, circ0066187 can function as a profibrotic metabolism-related factor, and interference with circ0066187 can prevent pulmonary fibrosis. The finding supported that circ0066187 can be a metabolism-related therapeutic target for IPF treatment.
期刊介绍:
Journal Name: Cellular and Molecular Life Sciences (CMLS)
Location: Basel, Switzerland
Focus:
Multidisciplinary journal
Publishes research articles, reviews, multi-author reviews, and visions & reflections articles
Coverage:
Latest aspects of biological and biomedical research
Areas include:
Biochemistry and molecular biology
Cell biology
Molecular and cellular aspects of biomedicine
Neuroscience
Pharmacology
Immunology
Additional Features:
Welcomes comments on any article published in CMLS
Accepts suggestions for topics to be covered