Metabolic Engineering of Corynebacterium glutamicum for Producing Different Types of Triterpenoids.

IF 3.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Jingzhi Li, Xinxin Wang, Xahnaz Xokat, Ya Wan, Xiaopeng Gao, Ying Wang, Chun Li
{"title":"Metabolic Engineering of <i>Corynebacterium glutamicum</i> for Producing Different Types of Triterpenoids.","authors":"Jingzhi Li, Xinxin Wang, Xahnaz Xokat, Ya Wan, Xiaopeng Gao, Ying Wang, Chun Li","doi":"10.1021/acssynbio.4c00737","DOIUrl":null,"url":null,"abstract":"<p><p>Triterpenoids widely exist in nature with diverse structures and possess various functional properties and biological effects. However, research on triterpenoids biosynthesis in <i>Corynebacterium glutamicum</i> is still limited to squalene, which restricts the development of <i>C. glutamicum</i> to produce high-value triterpenoids. In this study, <i>C. glutamicum</i> was developed as an efficient and flexible platform for the biosynthesis of different types of triterpenoids. Squalene was synthesized and the titer was improved to 400.1 mg/L in flask combining strategies of metabolic engineering and fermentation optimization. Particularly, intracellular squalene accounted for more than 97%, addressing the problem of leaking squalene in <i>C. glutamicum</i>, which may restrict the subsequent synthesis of other triterpenoids derived from squalene. Furthermore, 201.9 mg/L (3S)-2,3-oxidosqualene (SQO) and 264.9 mg/L (3S,22S)-2,3,22,23-dioxidosqualene (SDO) were successfully synthesized in strains harboring heterogeneous squalene epoxidase from <i>Arabidopsis thaliana</i> with different expression strengths. Therefore, a platform for de novo triterpenoids synthesis based on SQO or SDO was constructed in <i>C. glutamicum</i>. For instance, biosynthesis of α-amyrin and α-onocerin was achieved for the first time by introducing oxidosqualene cyclases in SQO- and SDO-producing <i>C. glutamicum</i> strains, respectively. After optimization, the titer of α-amyrin and α-onocerin was improved to 65.3 and 136.85 mg/L, respectively. Furthermore, ursolic acid, derived from α-amyrin, was synthesized after expressing cytochrome P450 enzyme and its compatible cytochrome P450 reductases with a titer of 486 μg/L. For the first time, reactions of epoxidation, cyclization, and oxidation from squalene were achieved in <i>C. glutamicum</i>, leading to the production of different types of triterpenoids. Our study provides a new platform for the production of triterpenoids, which will be helpful for the large-scale production of triterpenoids employing <i>C. glutamicum</i> as a chassis strain.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00737","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Triterpenoids widely exist in nature with diverse structures and possess various functional properties and biological effects. However, research on triterpenoids biosynthesis in Corynebacterium glutamicum is still limited to squalene, which restricts the development of C. glutamicum to produce high-value triterpenoids. In this study, C. glutamicum was developed as an efficient and flexible platform for the biosynthesis of different types of triterpenoids. Squalene was synthesized and the titer was improved to 400.1 mg/L in flask combining strategies of metabolic engineering and fermentation optimization. Particularly, intracellular squalene accounted for more than 97%, addressing the problem of leaking squalene in C. glutamicum, which may restrict the subsequent synthesis of other triterpenoids derived from squalene. Furthermore, 201.9 mg/L (3S)-2,3-oxidosqualene (SQO) and 264.9 mg/L (3S,22S)-2,3,22,23-dioxidosqualene (SDO) were successfully synthesized in strains harboring heterogeneous squalene epoxidase from Arabidopsis thaliana with different expression strengths. Therefore, a platform for de novo triterpenoids synthesis based on SQO or SDO was constructed in C. glutamicum. For instance, biosynthesis of α-amyrin and α-onocerin was achieved for the first time by introducing oxidosqualene cyclases in SQO- and SDO-producing C. glutamicum strains, respectively. After optimization, the titer of α-amyrin and α-onocerin was improved to 65.3 and 136.85 mg/L, respectively. Furthermore, ursolic acid, derived from α-amyrin, was synthesized after expressing cytochrome P450 enzyme and its compatible cytochrome P450 reductases with a titer of 486 μg/L. For the first time, reactions of epoxidation, cyclization, and oxidation from squalene were achieved in C. glutamicum, leading to the production of different types of triterpenoids. Our study provides a new platform for the production of triterpenoids, which will be helpful for the large-scale production of triterpenoids employing C. glutamicum as a chassis strain.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
10.60%
发文量
380
审稿时长
6-12 weeks
期刊介绍: The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism. Topics may include, but are not limited to: Design and optimization of genetic systems Genetic circuit design and their principles for their organization into programs Computational methods to aid the design of genetic systems Experimental methods to quantify genetic parts, circuits, and metabolic fluxes Genetic parts libraries: their creation, analysis, and ontological representation Protein engineering including computational design Metabolic engineering and cellular manufacturing, including biomass conversion Natural product access, engineering, and production Creative and innovative applications of cellular programming Medical applications, tissue engineering, and the programming of therapeutic cells Minimal cell design and construction Genomics and genome replacement strategies Viral engineering Automated and robotic assembly platforms for synthetic biology DNA synthesis methodologies Metagenomics and synthetic metagenomic analysis Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction Gene optimization Methods for genome-scale measurements of transcription and metabolomics Systems biology and methods to integrate multiple data sources in vitro and cell-free synthetic biology and molecular programming Nucleic acid engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信