T-ALPHA: A Hierarchical Transformer-Based Deep Neural Network for Protein-Ligand Binding Affinity Prediction with Uncertainty-Aware Self-Learning for Protein-Specific Alignment.

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL
Gregory W Kyro, Anthony M Smaldone, Yu Shee, Chuzhi Xu, Victor S Batista
{"title":"T-ALPHA: A Hierarchical Transformer-Based Deep Neural Network for Protein-Ligand Binding Affinity Prediction with Uncertainty-Aware Self-Learning for Protein-Specific Alignment.","authors":"Gregory W Kyro, Anthony M Smaldone, Yu Shee, Chuzhi Xu, Victor S Batista","doi":"10.1021/acs.jcim.4c02332","DOIUrl":null,"url":null,"abstract":"<p><p>There is significant interest in targeting disease-causing proteins with small molecule inhibitors to restore healthy cellular states. The ability to accurately predict the binding affinity of small molecules to a protein target in silico enables the rapid identification of candidate inhibitors and facilitates the optimization of on-target potency. In this work, we present T-ALPHA, a novel deep learning model that enhances protein-ligand binding affinity prediction by integrating multimodal feature representations within a hierarchical transformer framework to capture information critical to accurately predicting binding affinity. T-ALPHA outperforms all existing models reported in the literature on multiple benchmarks designed to evaluate protein-ligand binding affinity scoring functions. Remarkably, T-ALPHA maintains state-of-the-art performance when utilizing predicted structures rather than crystal structures, a powerful capability in real-world drug discovery applications where experimentally determined structures are often unavailable or incomplete. Additionally, we present an uncertainty-aware self-learning method for protein-specific alignment that does not require additional experimental data and demonstrate that it improves T-ALPHA's ability to rank compounds by binding affinity to biologically significant targets such as the SARS-CoV-2 main protease and the epidermal growth factor receptor. To facilitate implementation of T-ALPHA and reproducibility of all results presented in this paper, we made all of our software available at https://github.com/gregory-kyro/T-ALPHA.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02332","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

There is significant interest in targeting disease-causing proteins with small molecule inhibitors to restore healthy cellular states. The ability to accurately predict the binding affinity of small molecules to a protein target in silico enables the rapid identification of candidate inhibitors and facilitates the optimization of on-target potency. In this work, we present T-ALPHA, a novel deep learning model that enhances protein-ligand binding affinity prediction by integrating multimodal feature representations within a hierarchical transformer framework to capture information critical to accurately predicting binding affinity. T-ALPHA outperforms all existing models reported in the literature on multiple benchmarks designed to evaluate protein-ligand binding affinity scoring functions. Remarkably, T-ALPHA maintains state-of-the-art performance when utilizing predicted structures rather than crystal structures, a powerful capability in real-world drug discovery applications where experimentally determined structures are often unavailable or incomplete. Additionally, we present an uncertainty-aware self-learning method for protein-specific alignment that does not require additional experimental data and demonstrate that it improves T-ALPHA's ability to rank compounds by binding affinity to biologically significant targets such as the SARS-CoV-2 main protease and the epidermal growth factor receptor. To facilitate implementation of T-ALPHA and reproducibility of all results presented in this paper, we made all of our software available at https://github.com/gregory-kyro/T-ALPHA.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信