Cheng-Che Chuang, Yu-Chen Liu, Wei-En Jhang, Sin-Siang Wei, Yu-Yen Ou
{"title":"RAG_MCNNIL6: A Retrieval-Augmented Multi-Window Convolutional Network for Accurate Prediction of IL-6 Inducing Epitopes.","authors":"Cheng-Che Chuang, Yu-Chen Liu, Wei-En Jhang, Sin-Siang Wei, Yu-Yen Ou","doi":"10.1021/acs.jcim.4c02144","DOIUrl":null,"url":null,"abstract":"<p><p>Interleukin-6 (IL-6) is a critical cytokine involved in immune regulation, inflammation, and the pathogenesis of various diseases, including autoimmune disorders, cancer, and the cytokine storm associated with severe COVID-19. Identifying IL-6 inducing epitopes, the short peptide fragments that trigger IL-6 production, is crucial for developing epitope-based vaccines and immunotherapies. However, traditional methods for epitope prediction often lack accuracy and efficiency. This study presents RAG_MCNNIL6, a novel deep learning framework that integrates Retrieval-augmented generation (RAG) with multiwindow convolutional neural networks (MCNNs) for accurate and rapid prediction of IL-6 inducing epitopes. RAG_MCNNIL6 leverages ProtTrans, a state-of-the-art pretrained protein language model, to generate rich embedding representations of peptide sequences. By incorporating a RAG-based similarity retrieval and embedding augmentation strategy, RAG_MCNNIL6 effectively captures both local and global sequence patterns relevant for IL-6 induction, significantly improving prediction performance compared to existing methods. We demonstrate the superior performance of RAG_MCNNIL6 on benchmark data sets, highlighting its potential for advancing research and therapeutic development for IL-6-mediated diseases.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02144","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Interleukin-6 (IL-6) is a critical cytokine involved in immune regulation, inflammation, and the pathogenesis of various diseases, including autoimmune disorders, cancer, and the cytokine storm associated with severe COVID-19. Identifying IL-6 inducing epitopes, the short peptide fragments that trigger IL-6 production, is crucial for developing epitope-based vaccines and immunotherapies. However, traditional methods for epitope prediction often lack accuracy and efficiency. This study presents RAG_MCNNIL6, a novel deep learning framework that integrates Retrieval-augmented generation (RAG) with multiwindow convolutional neural networks (MCNNs) for accurate and rapid prediction of IL-6 inducing epitopes. RAG_MCNNIL6 leverages ProtTrans, a state-of-the-art pretrained protein language model, to generate rich embedding representations of peptide sequences. By incorporating a RAG-based similarity retrieval and embedding augmentation strategy, RAG_MCNNIL6 effectively captures both local and global sequence patterns relevant for IL-6 induction, significantly improving prediction performance compared to existing methods. We demonstrate the superior performance of RAG_MCNNIL6 on benchmark data sets, highlighting its potential for advancing research and therapeutic development for IL-6-mediated diseases.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.