ACP-CLB: An Anticancer Peptide Prediction Model Based on Multichannel Discriminative Processing and Integration of Large Pretrained Protein Language Models.
Aoyun Geng, Zhenjie Luo, Aohan Li, Zilong Zhang, Quan Zou, Leyi Wei, Feifei Cui
{"title":"ACP-CLB: An Anticancer Peptide Prediction Model Based on Multichannel Discriminative Processing and Integration of Large Pretrained Protein Language Models.","authors":"Aoyun Geng, Zhenjie Luo, Aohan Li, Zilong Zhang, Quan Zou, Leyi Wei, Feifei Cui","doi":"10.1021/acs.jcim.4c02072","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Cancer affects millions globally, and as research advances, our understanding and treatment of cancer evolve. Compared to conventional treatments with significant side effects, anticancer peptides (ACPs) have gained considerable attention. Validating ACPs through wet-lab experiments is time-consuming and costly. However, numerous artificial intelligence methods are now used for ACP identification and classification. These methods typically apply a uniform strategy to all feature types, overlooking the potential benefits of more specialized processing for different feature types.</p><p><strong>Innovation: </strong>In this paper, we propose a framework based on multichannel discriminative processing, where different neural networks are applied to process various feature types, optimizing their respective feature vectors. Additionally, we leverage Large Pretrained Protein Language Models to capture deeper sequence features, further enhancing the model's performance. Contributions: To better validate the overall performance and generalization ability of the model, we compared it with state-of-the-art models using four different data sets (AntiCp2Main, AntiCp2 Alternate, ACP740, cACP-DeepGram). The results show significant improvements across most metrics. Additionally, our proposed framework better assists researchers in distinguishing and identifying ACPs and further validates the need for distinct processing methods for different feature types.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02072","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Motivation: Cancer affects millions globally, and as research advances, our understanding and treatment of cancer evolve. Compared to conventional treatments with significant side effects, anticancer peptides (ACPs) have gained considerable attention. Validating ACPs through wet-lab experiments is time-consuming and costly. However, numerous artificial intelligence methods are now used for ACP identification and classification. These methods typically apply a uniform strategy to all feature types, overlooking the potential benefits of more specialized processing for different feature types.
Innovation: In this paper, we propose a framework based on multichannel discriminative processing, where different neural networks are applied to process various feature types, optimizing their respective feature vectors. Additionally, we leverage Large Pretrained Protein Language Models to capture deeper sequence features, further enhancing the model's performance. Contributions: To better validate the overall performance and generalization ability of the model, we compared it with state-of-the-art models using four different data sets (AntiCp2Main, AntiCp2 Alternate, ACP740, cACP-DeepGram). The results show significant improvements across most metrics. Additionally, our proposed framework better assists researchers in distinguishing and identifying ACPs and further validates the need for distinct processing methods for different feature types.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.