Tailoring Lewis Acidity of Metal Oxides on Nickel to Boost Electrocatalytic Hydrogen Evolution in Neutral Electrolyte.

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lin-Lin Wang, Xiao-Ran Wang, Hong-Juan Wang, Chong Zhang, Jing-Jing Li, Guo-Jin Feng, Xuan-Xuan Cheng, Xue-Rong Qin, Zi-You Yu, Tong-Bu Lu
{"title":"Tailoring Lewis Acidity of Metal Oxides on Nickel to Boost Electrocatalytic Hydrogen Evolution in Neutral Electrolyte.","authors":"Lin-Lin Wang, Xiao-Ran Wang, Hong-Juan Wang, Chong Zhang, Jing-Jing Li, Guo-Jin Feng, Xuan-Xuan Cheng, Xue-Rong Qin, Zi-You Yu, Tong-Bu Lu","doi":"10.1021/jacs.4c16596","DOIUrl":null,"url":null,"abstract":"<p><p>Neutral-pH water splitting for hydrogen production features a benign environment that could alleviate catalyst and electrolyzer corrosion but calls for the corresponding high-efficiency and earth-abundant hydrogen evolution reaction (HER) catalysts. Herein, we first designed a series of metal oxides decorated on Ni as the model catalysts and found a volcano-shaped relationship between the Lewis acidity of Ni/metal oxides and HER activity in neutral media. The Ni/ZnO with the optimum Lewis acidity could balance water dissociation and hydroxyl desorption, thereby greatly boosting the HER. On the basis of this finding, we further in situ grew the Ni/ZnO heterostructure on a three-dimensional conductive support. The resulting catalyst requires overpotentials of merely 34 and 194 mV to deliver the current densities of 10 and 200 mA cm<sup>-2</sup>, respectively, and can stably operate at these current densities for 2000 h in 1 M phosphate buffer solution (pH 7), representing the most active and durable HER catalyst in neutral electrolyte reported thus far. Our work provides an effective design scheme for low-cost and high-performance neutral HER catalysts.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c16596","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Neutral-pH water splitting for hydrogen production features a benign environment that could alleviate catalyst and electrolyzer corrosion but calls for the corresponding high-efficiency and earth-abundant hydrogen evolution reaction (HER) catalysts. Herein, we first designed a series of metal oxides decorated on Ni as the model catalysts and found a volcano-shaped relationship between the Lewis acidity of Ni/metal oxides and HER activity in neutral media. The Ni/ZnO with the optimum Lewis acidity could balance water dissociation and hydroxyl desorption, thereby greatly boosting the HER. On the basis of this finding, we further in situ grew the Ni/ZnO heterostructure on a three-dimensional conductive support. The resulting catalyst requires overpotentials of merely 34 and 194 mV to deliver the current densities of 10 and 200 mA cm-2, respectively, and can stably operate at these current densities for 2000 h in 1 M phosphate buffer solution (pH 7), representing the most active and durable HER catalyst in neutral electrolyte reported thus far. Our work provides an effective design scheme for low-cost and high-performance neutral HER catalysts.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信