Wenjie Luo, Kang Liu, Tao Luo, Junwei Fu, Hang Zhang, Chao Ma, Ting-Shan Chan, Cheng-Wei Kao, Zhang Lin, Liyuan Chai, Michelle L Coote, Min Liu
{"title":"Promoting C-F Bond Activation for Perfluorinated Compounds Decomposition via Atomically Synergistic Lewis and Brønsted Acid Sites.","authors":"Wenjie Luo, Kang Liu, Tao Luo, Junwei Fu, Hang Zhang, Chao Ma, Ting-Shan Chan, Cheng-Wei Kao, Zhang Lin, Liyuan Chai, Michelle L Coote, Min Liu","doi":"10.1021/jacs.4c15280","DOIUrl":null,"url":null,"abstract":"<p><p>Catalytic hydrolysis is a sustainable method for the degradation of perfluorinated compounds (PFCs) but is challenged by the high reaction temperatures required to cleave strong C-F bonds. Herein, we developed an innovative C-F activation strategy by constructing synergistic Lewis and Brønsted acid pairs over atomically dispersed Zn-O-Al sites to promote C-F bond activation for decomposition of typical PFCs, CF<sub>4</sub>. Density functional theory (DFT) calculations demonstrate tricoordinated Al (Al<sub>III</sub>) sites and Zn-OH functional, respectively, as Lewis and Brønsted acid sites over Zn-O-Al, synergistically enhancing the adsorption and decomposition of CF<sub>4</sub>. X-ray absorption spectroscopy (XAS), pyridine infrared spectroscopy (Py-IR), and ammonia temperature-programmed desorption (NH<sub>3</sub>-TPD) verified the presence of both Al<sub>III</sub> and Zn-OH on the atomically dispersed Zn-O-Al sites. CF<sub>4</sub>-TPD and <i>in situ</i> infrared spectroscopy confirmed that the Zn-O-Al sites facilitate CF<sub>4</sub> adsorption and C-F bond activation. As a result, the Zn-O-Al sites with synergistic Lewis and Brønsted acid pairs achieved 100% CF<sub>4</sub> decomposition at a low temperature of 560 °C and demonstrated outstanding stability for more than 250 h.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c15280","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Catalytic hydrolysis is a sustainable method for the degradation of perfluorinated compounds (PFCs) but is challenged by the high reaction temperatures required to cleave strong C-F bonds. Herein, we developed an innovative C-F activation strategy by constructing synergistic Lewis and Brønsted acid pairs over atomically dispersed Zn-O-Al sites to promote C-F bond activation for decomposition of typical PFCs, CF4. Density functional theory (DFT) calculations demonstrate tricoordinated Al (AlIII) sites and Zn-OH functional, respectively, as Lewis and Brønsted acid sites over Zn-O-Al, synergistically enhancing the adsorption and decomposition of CF4. X-ray absorption spectroscopy (XAS), pyridine infrared spectroscopy (Py-IR), and ammonia temperature-programmed desorption (NH3-TPD) verified the presence of both AlIII and Zn-OH on the atomically dispersed Zn-O-Al sites. CF4-TPD and in situ infrared spectroscopy confirmed that the Zn-O-Al sites facilitate CF4 adsorption and C-F bond activation. As a result, the Zn-O-Al sites with synergistic Lewis and Brønsted acid pairs achieved 100% CF4 decomposition at a low temperature of 560 °C and demonstrated outstanding stability for more than 250 h.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.