Machine-Learning-Accelerated Surface Exploration of Reconstructed BiVO4(010) and Characterization of Their Aqueous Interfaces.

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yonghyuk Lee, Taehun Lee
{"title":"Machine-Learning-Accelerated Surface Exploration of Reconstructed BiVO<sub>4</sub>(010) and Characterization of Their Aqueous Interfaces.","authors":"Yonghyuk Lee, Taehun Lee","doi":"10.1021/jacs.4c17739","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the semiconductor-electrolyte interface in photoelectrochemical (PEC) systems is crucial for optimizing the stability and reactivity. Despite the challenges in establishing reliable surface structure models during PEC cycles, this study explores the complex surface reconstructions of BiVO<sub>4</sub>(010) by employing a computational workflow integrated with a state-of-the-art active learning protocol for a machine-learning interatomic potential and global optimization techniques. Within this workflow, we identified 494 unique reconstructed surface structures that surpass conventional chemical intuition-driven, bulk-truncated models. After constructing the surface Pourbaix diagram under Bi- and V-rich electrolyte conditions using density functional theory and hybrid functional calculations, we proposed structural models for the experimentally observed Bi-rich BiVO<sub>4</sub> surfaces. By performing hybrid functional molecular dynamics simulations with the explicit treatment of water molecules on selected reconstructed BiVO<sub>4</sub>(010) surfaces, we observed water dissociation from molecular water. Our findings demonstrate significant water dissociation on reconstructed Bi-rich surfaces, highlighting the critical role of bare and undercoordinated Bi sites (only observable in reconstructed surfaces) in driving hydration processes. Our work establishes a foundation for understanding the role of complex, reconstructed Bi surfaces in surface hydration and reactivity. Additionally, our theoretical framework for exploring surface structures and predicting reactivity in multicomponent oxides offers a precise approach to describing complex surface and interface processes in PEC systems.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c17739","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the semiconductor-electrolyte interface in photoelectrochemical (PEC) systems is crucial for optimizing the stability and reactivity. Despite the challenges in establishing reliable surface structure models during PEC cycles, this study explores the complex surface reconstructions of BiVO4(010) by employing a computational workflow integrated with a state-of-the-art active learning protocol for a machine-learning interatomic potential and global optimization techniques. Within this workflow, we identified 494 unique reconstructed surface structures that surpass conventional chemical intuition-driven, bulk-truncated models. After constructing the surface Pourbaix diagram under Bi- and V-rich electrolyte conditions using density functional theory and hybrid functional calculations, we proposed structural models for the experimentally observed Bi-rich BiVO4 surfaces. By performing hybrid functional molecular dynamics simulations with the explicit treatment of water molecules on selected reconstructed BiVO4(010) surfaces, we observed water dissociation from molecular water. Our findings demonstrate significant water dissociation on reconstructed Bi-rich surfaces, highlighting the critical role of bare and undercoordinated Bi sites (only observable in reconstructed surfaces) in driving hydration processes. Our work establishes a foundation for understanding the role of complex, reconstructed Bi surfaces in surface hydration and reactivity. Additionally, our theoretical framework for exploring surface structures and predicting reactivity in multicomponent oxides offers a precise approach to describing complex surface and interface processes in PEC systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信