Olesya S Ablyasova, Mihkel Ugandi, Esma B Boydas, Mayara da Silva Santos, Max Flach, Vicente Zamudio-Bayer, Michael Roemelt, J Tobias Lau, Konstantin Hirsch
{"title":"High-Spin Manganese(V) in an Active Center Analogue of the Oxygen-Evolving Complex.","authors":"Olesya S Ablyasova, Mihkel Ugandi, Esma B Boydas, Mayara da Silva Santos, Max Flach, Vicente Zamudio-Bayer, Michael Roemelt, J Tobias Lau, Konstantin Hirsch","doi":"10.1021/jacs.4c14543","DOIUrl":null,"url":null,"abstract":"<p><p>In a comprehensive investigation of the dinuclear [Mn<sub>2</sub>O<sub>3</sub>]<sup>+</sup> cluster, the smallest dimanganese entity with two μ-oxo bridges and a terminal oxo ligand, and a simplified structural model of the active center in the oxygen-evolving complex, we identify antiferromagnetically coupled high-spin manganese centers in very different oxidation states of +2 and +5, but rule out the presence of a manganese(IV)-oxyl species by experimental X-ray absorption and X-ray magnetic circular dichroism spectroscopy combined with multireference calculations. This first identification of a high-spin manganese(V) center in any polynuclear oxidomanganese complex underscores the need for multireference computational methods to describe high-valent oxidomanganese species.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c14543","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In a comprehensive investigation of the dinuclear [Mn2O3]+ cluster, the smallest dimanganese entity with two μ-oxo bridges and a terminal oxo ligand, and a simplified structural model of the active center in the oxygen-evolving complex, we identify antiferromagnetically coupled high-spin manganese centers in very different oxidation states of +2 and +5, but rule out the presence of a manganese(IV)-oxyl species by experimental X-ray absorption and X-ray magnetic circular dichroism spectroscopy combined with multireference calculations. This first identification of a high-spin manganese(V) center in any polynuclear oxidomanganese complex underscores the need for multireference computational methods to describe high-valent oxidomanganese species.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.