Inhibiting mechanotransduction prevents scarring and yields regeneration in a large animal model

IF 15.8 1区 医学 Q1 CELL BIOLOGY
Science Translational Medicine Pub Date : 2025-02-19
Shamik Mascharak, Michelle Griffin, Heather E. Talbott, Jason L. Guo, Jennifer Parker, Annah Grace Morgan, Caleb Valencia, Maxwell Michael Kuhnert, Dayan J. Li, Norah E. Liang, Rachel M. Kratofil, Joseph A. Daccache, Ikjot Sidhu, Michael F. Davitt, Nicholas Guardino, John M. Lu, Darren B. Abbas, Nestor M. D. Deleon, Christopher V. Lavin, Sandeep Adem, Anum Khan, Kellen Chen, Dominic Henn, Amanda Spielman, Asha Cotterell, Deena Akras, Mauricio Downer Jr., Ruth Tevlin, H. Peter Lorenz, Geoffrey C. Gurtner, Michael Januszyk, Shruti Naik, Derrick C. Wan, Michael T. Longaker
{"title":"Inhibiting mechanotransduction prevents scarring and yields regeneration in a large animal model","authors":"Shamik Mascharak,&nbsp;Michelle Griffin,&nbsp;Heather E. Talbott,&nbsp;Jason L. Guo,&nbsp;Jennifer Parker,&nbsp;Annah Grace Morgan,&nbsp;Caleb Valencia,&nbsp;Maxwell Michael Kuhnert,&nbsp;Dayan J. Li,&nbsp;Norah E. Liang,&nbsp;Rachel M. Kratofil,&nbsp;Joseph A. Daccache,&nbsp;Ikjot Sidhu,&nbsp;Michael F. Davitt,&nbsp;Nicholas Guardino,&nbsp;John M. Lu,&nbsp;Darren B. Abbas,&nbsp;Nestor M. D. Deleon,&nbsp;Christopher V. Lavin,&nbsp;Sandeep Adem,&nbsp;Anum Khan,&nbsp;Kellen Chen,&nbsp;Dominic Henn,&nbsp;Amanda Spielman,&nbsp;Asha Cotterell,&nbsp;Deena Akras,&nbsp;Mauricio Downer Jr.,&nbsp;Ruth Tevlin,&nbsp;H. Peter Lorenz,&nbsp;Geoffrey C. Gurtner,&nbsp;Michael Januszyk,&nbsp;Shruti Naik,&nbsp;Derrick C. Wan,&nbsp;Michael T. Longaker","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Modulating mechanotransduction by inhibiting yes-associated protein (YAP) in mice yields wound regeneration without scarring. However, rodents are loose-skinned and fail to recapitulate key aspects of human wound repair. We sought to elucidate the effects of YAP inhibition in red Duroc pig wounds, the most human-like model of scarring. We show that one-time treatment with verteporfin, a YAP inhibitor, immediately after wounding is sufficient to prevent scarring and to drive wound regeneration in pigs. By performing single-cell RNA sequencing (scRNA-seq) on porcine wounds in conjunction with spatial proteomic analysis, we found perturbations in fibroblast dynamics with verteporfin treatment and the presence of putative pro-regenerative/profibrotic fibroblasts enriched in regenerating/scarring pig wounds, respectively. We also identified differences in enriched myeloid cell subpopulations after treatment and linked this observation to increased elaboration of interleukin-33 (IL-33) in regenerating wounds. Finally, we validated our findings in a xenograft wound model containing human neonatal foreskin engrafted onto nude mice and used scRNA-seq of human wound cells to draw parallels with fibroblast subpopulation dynamics in porcine wounds. Collectively, our findings provide support for the clinical translation of local mechanotransduction inhibitors to prevent human skin scarring, and they clarify a YAP/IL-33 signaling axis in large animal wound regeneration.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"17 786","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/scitranslmed.adt6387","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Modulating mechanotransduction by inhibiting yes-associated protein (YAP) in mice yields wound regeneration without scarring. However, rodents are loose-skinned and fail to recapitulate key aspects of human wound repair. We sought to elucidate the effects of YAP inhibition in red Duroc pig wounds, the most human-like model of scarring. We show that one-time treatment with verteporfin, a YAP inhibitor, immediately after wounding is sufficient to prevent scarring and to drive wound regeneration in pigs. By performing single-cell RNA sequencing (scRNA-seq) on porcine wounds in conjunction with spatial proteomic analysis, we found perturbations in fibroblast dynamics with verteporfin treatment and the presence of putative pro-regenerative/profibrotic fibroblasts enriched in regenerating/scarring pig wounds, respectively. We also identified differences in enriched myeloid cell subpopulations after treatment and linked this observation to increased elaboration of interleukin-33 (IL-33) in regenerating wounds. Finally, we validated our findings in a xenograft wound model containing human neonatal foreskin engrafted onto nude mice and used scRNA-seq of human wound cells to draw parallels with fibroblast subpopulation dynamics in porcine wounds. Collectively, our findings provide support for the clinical translation of local mechanotransduction inhibitors to prevent human skin scarring, and they clarify a YAP/IL-33 signaling axis in large animal wound regeneration.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Translational Medicine
Science Translational Medicine CELL BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
26.70
自引率
1.20%
发文量
309
审稿时长
1.7 months
期刊介绍: Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research. The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases. The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine. The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信