Exploring Graphitic Carbon Nitride as Novel Drug Delivery System for Hesperetin (Anticancer Drug): Insights From DFT Calculations and Molecular Dynamics Simulations

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Mubashar Ilyas, Maroof Ahmad Khan, Shehwas Kalsoom, Muhammad Abbas, Mehvish Perveen, Javed Iqbal, Shabbir Muhammad, Hui Li
{"title":"Exploring Graphitic Carbon Nitride as Novel Drug Delivery System for Hesperetin (Anticancer Drug): Insights From DFT Calculations and Molecular Dynamics Simulations","authors":"Mubashar Ilyas,&nbsp;Maroof Ahmad Khan,&nbsp;Shehwas Kalsoom,&nbsp;Muhammad Abbas,&nbsp;Mehvish Perveen,&nbsp;Javed Iqbal,&nbsp;Shabbir Muhammad,&nbsp;Hui Li","doi":"10.1002/qua.70018","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In the present work, density functional theory (DFT) and molecular dynamics (MD) simulations were employed to explore the interaction between Hesperetin (HST), an anticancer drug, and 2D graphitic carbon nitride (GRP) nanocarrier designed for targeted drug delivery. The B3LYP/B3LYP-D3 functionals and the 6-31G (d,p) basis set were used for DFT calculations in both gaseous and solvent environments. The outcomes reveal exothermic adsorption (adsorption energy = −0.18 eV) of HST on the GRP nanocarrier, suggesting increased stability for enhanced drug delivery in biological systems. Calculations of orbital energy and density of state (DOS) demonstrate a reduced HOMO–LUMO energy gap (3.15 eV) of GRP upon interaction with HST. In an aqueous medium, the HST@GRP complex exhibits a higher dipole moment (3.48 D) compared to the gas phase (1.60 D), facilitating effective drug transportation. Charge decomposition analysis (CDA) identifies an orbital overlap between HST and GRP, supported by natural bond orbitals showing evidence of charge transfer. Computational UV–visible spectra closely match with experimental data. The elucidation of the photoinduced electron transfer (PET) mechanism explains fluorescence quenching. In summary, these findings suggest the potential of GRP as an efficient nanocarrier for HST drug delivery, encouraging further exploration of 2D nanomaterials in drug transport systems.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"125 5","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.70018","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the present work, density functional theory (DFT) and molecular dynamics (MD) simulations were employed to explore the interaction between Hesperetin (HST), an anticancer drug, and 2D graphitic carbon nitride (GRP) nanocarrier designed for targeted drug delivery. The B3LYP/B3LYP-D3 functionals and the 6-31G (d,p) basis set were used for DFT calculations in both gaseous and solvent environments. The outcomes reveal exothermic adsorption (adsorption energy = −0.18 eV) of HST on the GRP nanocarrier, suggesting increased stability for enhanced drug delivery in biological systems. Calculations of orbital energy and density of state (DOS) demonstrate a reduced HOMO–LUMO energy gap (3.15 eV) of GRP upon interaction with HST. In an aqueous medium, the HST@GRP complex exhibits a higher dipole moment (3.48 D) compared to the gas phase (1.60 D), facilitating effective drug transportation. Charge decomposition analysis (CDA) identifies an orbital overlap between HST and GRP, supported by natural bond orbitals showing evidence of charge transfer. Computational UV–visible spectra closely match with experimental data. The elucidation of the photoinduced electron transfer (PET) mechanism explains fluorescence quenching. In summary, these findings suggest the potential of GRP as an efficient nanocarrier for HST drug delivery, encouraging further exploration of 2D nanomaterials in drug transport systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Quantum Chemistry
International Journal of Quantum Chemistry 化学-数学跨学科应用
CiteScore
4.70
自引率
4.50%
发文量
185
审稿时长
2 months
期刊介绍: Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信