Thermomagnetic peristaltic Casson flow in a microchannel containing a Darcy–Brinkman porous medium under the influence of oscillatory, thermal radiation, slip and heat source effects

IF 1.9 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Pramana Pub Date : 2025-02-19 DOI:10.1007/s12043-024-02869-1
G Shankar, P Deepalakshmi, E P Siva, D Tripathi, O Anwar Bég
{"title":"Thermomagnetic peristaltic Casson flow in a microchannel containing a Darcy–Brinkman porous medium under the influence of oscillatory, thermal radiation, slip and heat source effects","authors":"G Shankar,&nbsp;P Deepalakshmi,&nbsp;E P Siva,&nbsp;D Tripathi,&nbsp;O Anwar Bég","doi":"10.1007/s12043-024-02869-1","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this article is to study mathematically the magnetohydrodynamic (MHD) unsteady non-Newtonian oscillatory blood flow and heat transfer in microchannels containing a Darcy–Brinkman porous medium. The Casson fluid model is deployed. Additionally, the effects of heat source, nonlinear thermal radiation and Hall current are included. Convective heating and slip at the internal boundaries of the microchannel are also examined. Utilising a set of non-dimensional variables, the governing partial differential equations and associated boundary conditions are transformed into a non-dimensional form. By solving the transformed model, exact solutions are obtained. Graphical representations depict the influence of different physical characteristics on the velocity and temperature patterns. In addition, this study incorporated a parametric analysis to demonstrate the impacts of key parameters on Nusselt number and wall shear stress. Increased values of thermal radiation and Casson rheological parameters produce intensified velocity fields. Blood flow is also controlled by modulating the intensity of the external magnetic field and the regulation of the blood temperature is achieved by modifying its thermal conductivity. With an increment in thermal Biot number (<i>Bh</i>) (stronger convective heating at the microchannel walls) there is a uniform increase in temperatures. With the elevation in the Hall parameter, more complex streamline patterns are generated and there is an increase in the magnitude of trapped boluses. An increment in Grashof number (<i>Gr</i>), i.e. stronger thermal buoyancy force, accelerates the flow. Elevation in the Nusselt number is produced with a stronger heat source (<i>S</i>). With greater frequency (<i>ω</i>), the blood flow is more strongly modified by periodic fluctuations in the driving pressure and this produces an elevated amplitude of velocity oscillations, thereby increasing the average velocity of the blood. Increasing slip (<span>\\(\\gamma )\\)</span> generates significant flow deceleration in the microchannel. This work, which focusses on the thermal radiation in the blood flow, will significantly influence therapeutic strategies for hyperthermia. Specifically, the analysis provides a good foundation for more sophisticated computational fluid dynamics (CFD) studies and will enhance our understanding and management of blood flow and heat transfer in, for example, arterial hemodynamics.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"99 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-024-02869-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this article is to study mathematically the magnetohydrodynamic (MHD) unsteady non-Newtonian oscillatory blood flow and heat transfer in microchannels containing a Darcy–Brinkman porous medium. The Casson fluid model is deployed. Additionally, the effects of heat source, nonlinear thermal radiation and Hall current are included. Convective heating and slip at the internal boundaries of the microchannel are also examined. Utilising a set of non-dimensional variables, the governing partial differential equations and associated boundary conditions are transformed into a non-dimensional form. By solving the transformed model, exact solutions are obtained. Graphical representations depict the influence of different physical characteristics on the velocity and temperature patterns. In addition, this study incorporated a parametric analysis to demonstrate the impacts of key parameters on Nusselt number and wall shear stress. Increased values of thermal radiation and Casson rheological parameters produce intensified velocity fields. Blood flow is also controlled by modulating the intensity of the external magnetic field and the regulation of the blood temperature is achieved by modifying its thermal conductivity. With an increment in thermal Biot number (Bh) (stronger convective heating at the microchannel walls) there is a uniform increase in temperatures. With the elevation in the Hall parameter, more complex streamline patterns are generated and there is an increase in the magnitude of trapped boluses. An increment in Grashof number (Gr), i.e. stronger thermal buoyancy force, accelerates the flow. Elevation in the Nusselt number is produced with a stronger heat source (S). With greater frequency (ω), the blood flow is more strongly modified by periodic fluctuations in the driving pressure and this produces an elevated amplitude of velocity oscillations, thereby increasing the average velocity of the blood. Increasing slip (\(\gamma )\) generates significant flow deceleration in the microchannel. This work, which focusses on the thermal radiation in the blood flow, will significantly influence therapeutic strategies for hyperthermia. Specifically, the analysis provides a good foundation for more sophisticated computational fluid dynamics (CFD) studies and will enhance our understanding and management of blood flow and heat transfer in, for example, arterial hemodynamics.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Pramana
Pramana 物理-物理:综合
CiteScore
3.60
自引率
7.10%
发文量
206
审稿时长
3 months
期刊介绍: Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信