On a Cross-Diffusion Model in Ecohydrology: Theory and Numerics

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Iván Moreno-Villamil, Diego A. Rueda-Gómez, Élder J. Villamizar-Roa
{"title":"On a Cross-Diffusion Model in Ecohydrology: Theory and Numerics","authors":"Iván Moreno-Villamil,&nbsp;Diego A. Rueda-Gómez,&nbsp;Élder J. Villamizar-Roa","doi":"10.1007/s10440-025-00708-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider a version of the mathematical model introduced in (Wang et al. in Commun. Nonlinear Sci. Numer. Simul. 42:571–584, 2017) to describe the interaction between vegetation and soil water in arid environments. The model corresponds to a nonlinear parabolic coupled system of partial differential equations, with non-flux boundary conditions, which incorporates, in addition to the natural diffusion of water and plants, a cross-diffusion term given by the hydraulic diffusivity due to the suction of water by the roots. The model also considers a monotonously decreasing vegetation death rate capturing the infiltration feedback between plants and ground water. We first prove the existence and uniqueness of global solutions in a large class of initial data, allowing non-regular ones. These solutions are in a mild setting and under additional regularity assumptions on the initial data and the domain, they are classical. Second, we propose a fully discrete numerical scheme, based on a semi-implicit Euler discretization in time and finite element discretization (with “mass-lumping”) in space, for approximating the solutions of the continuous model. We prove the well-posedness of the numerical scheme and some qualitative properties of the discrete solutions including, positivity, uniform weak and strong estimates, convergence towards strong solutions and optimal error estimates. Finally, we present some numerical experiments in order to showcase the good behavior of the numerical scheme including the formation of Turing patterns, as well as to validate the convergence order in the error estimates obtained in the theoretical analysis.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"196 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10440-025-00708-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-025-00708-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a version of the mathematical model introduced in (Wang et al. in Commun. Nonlinear Sci. Numer. Simul. 42:571–584, 2017) to describe the interaction between vegetation and soil water in arid environments. The model corresponds to a nonlinear parabolic coupled system of partial differential equations, with non-flux boundary conditions, which incorporates, in addition to the natural diffusion of water and plants, a cross-diffusion term given by the hydraulic diffusivity due to the suction of water by the roots. The model also considers a monotonously decreasing vegetation death rate capturing the infiltration feedback between plants and ground water. We first prove the existence and uniqueness of global solutions in a large class of initial data, allowing non-regular ones. These solutions are in a mild setting and under additional regularity assumptions on the initial data and the domain, they are classical. Second, we propose a fully discrete numerical scheme, based on a semi-implicit Euler discretization in time and finite element discretization (with “mass-lumping”) in space, for approximating the solutions of the continuous model. We prove the well-posedness of the numerical scheme and some qualitative properties of the discrete solutions including, positivity, uniform weak and strong estimates, convergence towards strong solutions and optimal error estimates. Finally, we present some numerical experiments in order to showcase the good behavior of the numerical scheme including the formation of Turing patterns, as well as to validate the convergence order in the error estimates obtained in the theoretical analysis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信