Interpolation of variable Hardy–Lorentz–Karamata spaces associated with rearrangement functions

IF 1.4 3区 数学 Q1 MATHEMATICS
Zhiwei Hao, Libo Li, Ferenc Weisz
{"title":"Interpolation of variable Hardy–Lorentz–Karamata spaces associated with rearrangement functions","authors":"Zhiwei Hao,&nbsp;Libo Li,&nbsp;Ferenc Weisz","doi":"10.1007/s13324-025-01032-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we introduce variable Lorentz–Karamata spaces <span>\\({\\mathcal {L}}_{p(\\cdot ),q,b}(R)\\)</span> defined by rearrangement functions and develop the martingale theory in this framework. The real interpolation theory for variable Lorentz–Karamata spaces is presented. Based on this and the new atomic decomposition, we study the real interpolation theory for variable martingale Hardy–Lorentz–Karamata spaces. We also characterize the real interpolation spaces between variable martingale Hardy spaces and <span>\\(BMO_2\\)</span> spaces. The results obtained here generalize the previous results for variable Lorentz spaces as well as for variable martingale Hardy–Lorentz spaces. Moreover, we remove the condition <span>\\(\\theta +p_-&gt;1\\)</span> in [Banach J. Math. Anal. 2023, 17(3): 47].</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-025-01032-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01032-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we introduce variable Lorentz–Karamata spaces \({\mathcal {L}}_{p(\cdot ),q,b}(R)\) defined by rearrangement functions and develop the martingale theory in this framework. The real interpolation theory for variable Lorentz–Karamata spaces is presented. Based on this and the new atomic decomposition, we study the real interpolation theory for variable martingale Hardy–Lorentz–Karamata spaces. We also characterize the real interpolation spaces between variable martingale Hardy spaces and \(BMO_2\) spaces. The results obtained here generalize the previous results for variable Lorentz spaces as well as for variable martingale Hardy–Lorentz spaces. Moreover, we remove the condition \(\theta +p_->1\) in [Banach J. Math. Anal. 2023, 17(3): 47].

与重排函数相关的变量Hardy-Lorentz-Karamata空间的插值
本文引入了由重排函数定义的可变洛伦兹-卡拉马塔空间\({\mathcal {L}}_{p(\cdot ),q,b}(R)\),并在此框架下发展了鞅理论。给出了可变洛伦兹-卡拉玛塔空间的实插值理论。在此基础上,结合新的原子分解,研究了变鞅Hardy-Lorentz-Karamata空间的实插值理论。我们还刻画了变鞅Hardy空间与\(BMO_2\)空间之间的实插值空间。本文的结果推广了之前关于变洛伦兹空间和变鞅Hardy-Lorentz空间的结果。此外,我们删除了[Banach J. Math]中的条件\(\theta +p_->1\)。植物学报,2023,17(3):47。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信