Non-free radical regulation mechanism based on pH in the peroxymonosulfate activation process mediated by single-atom Co catalyst for the specific rapid degradation of emerging pollutants

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Lingxiao Zou , Yihui Hu , Yuancai Lv , Yifan Liu , Xiaoxia Ye , Chunxiang Lin , Liang Song , Chen Tian , Guifang Yang , Minghua Liu
{"title":"Non-free radical regulation mechanism based on pH in the peroxymonosulfate activation process mediated by single-atom Co catalyst for the specific rapid degradation of emerging pollutants","authors":"Lingxiao Zou ,&nbsp;Yihui Hu ,&nbsp;Yuancai Lv ,&nbsp;Yifan Liu ,&nbsp;Xiaoxia Ye ,&nbsp;Chunxiang Lin ,&nbsp;Liang Song ,&nbsp;Chen Tian ,&nbsp;Guifang Yang ,&nbsp;Minghua Liu","doi":"10.1016/j.jcis.2025.02.110","DOIUrl":null,"url":null,"abstract":"<div><div>Persulfate-based advanced oxidation technologies (PS-AOPs) show great potential in treating emerging pollutants because of their multiple reaction pathways induced by a variety of reactive species. However, the modulation of the reactive species in PS-AOPs and the specificity of reactive species for contaminants have still not received adequate attention. In this work, the feasibility of pH on modulating reactive species in PS-AOPs mediated by single-atom Co catalyst (Co<sub>SA</sub>) and the relationship between each species and contaminant were deeply discussed. In the Co<sub>SA</sub>/PMS system, Co(IV) was the predominantly active species in acidic conditions, and <sup>1</sup>O<sub>2</sub> was the predominantly active species in neutral and alkaline conditions. Specific degradation relationships with various pollutants were explored based on different major active species regulated under different pH conditions. Density Functional Theory (DFT) and experimental results demonstrated that organic pollutants with high E<sub>HOMO</sub> (Energy of the Highest Occupied Molecular Orbital), low VIP (Vertical Ionization Potential) and ΔE (Energy Gap) were susceptible to oxidative degradation. Sulfonamide compounds, phenol compounds and tetracycline compounds tended to be attacked by <sup>1</sup>O<sub>2</sub>. And the carbamazepine compounds and quinolone compounds tended to be attacked by Co(IV). This study will provide new perspectives on reactive species regulation and specific degradation of pollutants, and offer innovative ideas for rapid remediation of emerging pollutants in aquatic environments.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"687 ","pages":"Pages 617-629"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725004643","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Persulfate-based advanced oxidation technologies (PS-AOPs) show great potential in treating emerging pollutants because of their multiple reaction pathways induced by a variety of reactive species. However, the modulation of the reactive species in PS-AOPs and the specificity of reactive species for contaminants have still not received adequate attention. In this work, the feasibility of pH on modulating reactive species in PS-AOPs mediated by single-atom Co catalyst (CoSA) and the relationship between each species and contaminant were deeply discussed. In the CoSA/PMS system, Co(IV) was the predominantly active species in acidic conditions, and 1O2 was the predominantly active species in neutral and alkaline conditions. Specific degradation relationships with various pollutants were explored based on different major active species regulated under different pH conditions. Density Functional Theory (DFT) and experimental results demonstrated that organic pollutants with high EHOMO (Energy of the Highest Occupied Molecular Orbital), low VIP (Vertical Ionization Potential) and ΔE (Energy Gap) were susceptible to oxidative degradation. Sulfonamide compounds, phenol compounds and tetracycline compounds tended to be attacked by 1O2. And the carbamazepine compounds and quinolone compounds tended to be attacked by Co(IV). This study will provide new perspectives on reactive species regulation and specific degradation of pollutants, and offer innovative ideas for rapid remediation of emerging pollutants in aquatic environments.

Abstract Image

单原子 Co 催化剂介导的过硫酸盐活化过程中基于 pH 值的非自由基调节机制,用于特定快速降解新出现的污染物
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信