Effect of end expiration breath hold on target volumes and organ at risk doses for oesophageal cancer radiotherapy

IF 3.4 Q2 ONCOLOGY
Christopher Mayhew , Jeyaanth Venkatasai , Marina Khan , Victoria Butterworth , Kasia Owczarczyk , Georgios Ntentas
{"title":"Effect of end expiration breath hold on target volumes and organ at risk doses for oesophageal cancer radiotherapy","authors":"Christopher Mayhew ,&nbsp;Jeyaanth Venkatasai ,&nbsp;Marina Khan ,&nbsp;Victoria Butterworth ,&nbsp;Kasia Owczarczyk ,&nbsp;Georgios Ntentas","doi":"10.1016/j.phro.2025.100726","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Purpose</h3><div>The end expiration breath hold (EEBH) technique has the potential to reduce tumour motion during radiotherapy treatment of lower oesophageal cancer, and therefore, motion artefacts, target volumes and dose to surrounding organs at risk (OAR). EEBH is an emerging technique and clinical data on its use in oesophageal cancer is scarce.</div></div><div><h3>Methods and Materials</h3><div>A comparison of 20 lower oesophageal cancer patients was performed for radiotherapy treatment plans in both EEBH and free breathing (FB). EEBH and FB plans were evaluated and compared in terms of motion artefacts, target volumes and dose-volume metrics.</div></div><div><h3>Results</h3><div>EEBH was effective in reducing the observed motion artefacts seen in planning CTs compared to FB. EEBH also significantly reduced the average PTV size between EEBH and FB (ΔV = -48 ± 55 cm<sup>3</sup>; p &lt; 0.001). OAR-PTV overlap volumes were also effectively reduced in EEBH compared to FB, including for lung-PTV overlaps (ΔV = -13 ± 13 cm<sup>3</sup>; p &lt; 0.001) and for heart-PTV overlaps (ΔV = -8 ± 14 cm<sup>3</sup>; p = 0.02). Mean heart doses were lower on average by −1.2 ± 2.0 Gy with EEBH (p = 0.02), and mean lung doses by −1.0 ± 1.0 Gy (p &lt; 0.001). Mean liver doses were on average reduced with EEBH by −0.6 ± 1.5 Gy, whereas spinal D<sub>2cm</sub>3 increased in EEBH compared to FB by 1.8 ± 6.3 Gy, but neither were statistically significant.</div></div><div><h3>Conclusion</h3><div>Use of EEBH for oesophageal cancer radiotherapy reduced motion artefacts and increased confidence in contouring volumes. Additionally, planning target volumes and doses to key OARs were reduced with EEBH compared to FB plans.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"33 ","pages":"Article 100726"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625000314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and Purpose

The end expiration breath hold (EEBH) technique has the potential to reduce tumour motion during radiotherapy treatment of lower oesophageal cancer, and therefore, motion artefacts, target volumes and dose to surrounding organs at risk (OAR). EEBH is an emerging technique and clinical data on its use in oesophageal cancer is scarce.

Methods and Materials

A comparison of 20 lower oesophageal cancer patients was performed for radiotherapy treatment plans in both EEBH and free breathing (FB). EEBH and FB plans were evaluated and compared in terms of motion artefacts, target volumes and dose-volume metrics.

Results

EEBH was effective in reducing the observed motion artefacts seen in planning CTs compared to FB. EEBH also significantly reduced the average PTV size between EEBH and FB (ΔV = -48 ± 55 cm3; p < 0.001). OAR-PTV overlap volumes were also effectively reduced in EEBH compared to FB, including for lung-PTV overlaps (ΔV = -13 ± 13 cm3; p < 0.001) and for heart-PTV overlaps (ΔV = -8 ± 14 cm3; p = 0.02). Mean heart doses were lower on average by −1.2 ± 2.0 Gy with EEBH (p = 0.02), and mean lung doses by −1.0 ± 1.0 Gy (p < 0.001). Mean liver doses were on average reduced with EEBH by −0.6 ± 1.5 Gy, whereas spinal D2cm3 increased in EEBH compared to FB by 1.8 ± 6.3 Gy, but neither were statistically significant.

Conclusion

Use of EEBH for oesophageal cancer radiotherapy reduced motion artefacts and increased confidence in contouring volumes. Additionally, planning target volumes and doses to key OARs were reduced with EEBH compared to FB plans.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信