Margins to compensate for respiratory-induced mismatches between lung tumor and fiducial marker positions using four-dimensional computed tomography

IF 3.4 Q2 ONCOLOGY
Seiya Matsumoto , Nobutaka Mukumoto , Tomohiro Ono , Hiraku Iramina , Hideaki Hirashima , Takanori Adachi , Yuki Miyabe , Noriko Kishi , Takashi Mizowaki , Mitsuhiro Nakamura
{"title":"Margins to compensate for respiratory-induced mismatches between lung tumor and fiducial marker positions using four-dimensional computed tomography","authors":"Seiya Matsumoto ,&nbsp;Nobutaka Mukumoto ,&nbsp;Tomohiro Ono ,&nbsp;Hiraku Iramina ,&nbsp;Hideaki Hirashima ,&nbsp;Takanori Adachi ,&nbsp;Yuki Miyabe ,&nbsp;Noriko Kishi ,&nbsp;Takashi Mizowaki ,&nbsp;Mitsuhiro Nakamura","doi":"10.1016/j.phro.2025.100728","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><div>Tumors and fiducial markers do not always exhibit synchronous motion across different respiratory phases, in a phenomenon called the target localization error (TLE). We determined the margin to compensate for the TLE using four-dimensional computed tomography (4D-CT).</div></div><div><h3>Materials and methods</h3><div>We analyzed data from 21 lung tumor patients with fiducial markers; 11 for TLE determination and 10 for validation. Shifted CT images were generated by aligning the centroids of the fiducial markers in the reference phase of 4D-CT with those in each respiratory phase, and the union of gross tumor volumes (GTVs) was determined (<span><math><msubsup><mrow><mi>G</mi><mi>T</mi><mi>V</mi></mrow><mrow><mi>u</mi><mi>n</mi><mi>i</mi><mi>o</mi><mi>n</mi></mrow><mrow><mi>s</mi><mi>h</mi><mi>i</mi><mi>f</mi><mi>t</mi></mrow></msubsup></math></span>). Conversely, variations in GTV centroids across the respiratory phases were calculated, and the 95th percentile of the root mean square error was defined as the TLE. Using this TLE, a GTV with an added TLE (<span><math><msubsup><mrow><mi>G</mi><mi>T</mi><mi>V</mi></mrow><mrow><mi>T</mi><mi>L</mi><mi>E</mi></mrow><mrow><mi>r</mi><mi>e</mi><mi>f</mi></mrow></msubsup></math></span>) was generated in the reference phase. Subsequently, a treatment plan assuming dynamic tumor tracking (DTT) was created for the planning target volume, derived by adding an isotropic 5 mm margin to <span><math><msubsup><mrow><mi>G</mi><mi>T</mi><mi>V</mi></mrow><mrow><mi>T</mi><mi>L</mi><mi>E</mi></mrow><mrow><mi>r</mi><mi>e</mi><mi>f</mi></mrow></msubsup></math></span>, and the dose coverage for <span><math><msubsup><mrow><mi>G</mi><mi>T</mi><mi>V</mi></mrow><mrow><mi>u</mi><mi>n</mi><mi>i</mi><mi>o</mi><mi>n</mi></mrow><mrow><mi>s</mi><mi>h</mi><mi>i</mi><mi>f</mi><mi>t</mi></mrow></msubsup></math></span> was evaluated.</div></div><div><h3>Results</h3><div>The TLEs (standard deviations of the root mean square error) were 2.0 (0.8) mm, 2.1(0.7) mm, and 3.2 (1.1) mm in the left − right, anterior − posterior, and superior − inferior directions, respectively. A dosimetric evaluation revealed that <span><math><msubsup><mrow><mi>G</mi><mi>T</mi><mi>V</mi></mrow><mrow><mi>u</mi><mi>n</mi><mi>i</mi><mi>o</mi><mi>n</mi></mrow><mrow><mi>s</mi><mi>h</mi><mi>i</mi><mi>f</mi><mi>t</mi></mrow></msubsup></math></span> did not receive 100 % of the prescribed dose in four of 10 cases owing to artifacts.</div></div><div><h3>Conclusion</h3><div>The TLE can be compensated by adding an anisotropic margin to the GTV in the reference phase, a critical consideration in DTT.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"33 ","pages":"Article 100728"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625000338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose

Tumors and fiducial markers do not always exhibit synchronous motion across different respiratory phases, in a phenomenon called the target localization error (TLE). We determined the margin to compensate for the TLE using four-dimensional computed tomography (4D-CT).

Materials and methods

We analyzed data from 21 lung tumor patients with fiducial markers; 11 for TLE determination and 10 for validation. Shifted CT images were generated by aligning the centroids of the fiducial markers in the reference phase of 4D-CT with those in each respiratory phase, and the union of gross tumor volumes (GTVs) was determined (GTVunionshift). Conversely, variations in GTV centroids across the respiratory phases were calculated, and the 95th percentile of the root mean square error was defined as the TLE. Using this TLE, a GTV with an added TLE (GTVTLEref) was generated in the reference phase. Subsequently, a treatment plan assuming dynamic tumor tracking (DTT) was created for the planning target volume, derived by adding an isotropic 5 mm margin to GTVTLEref, and the dose coverage for GTVunionshift was evaluated.

Results

The TLEs (standard deviations of the root mean square error) were 2.0 (0.8) mm, 2.1(0.7) mm, and 3.2 (1.1) mm in the left − right, anterior − posterior, and superior − inferior directions, respectively. A dosimetric evaluation revealed that GTVunionshift did not receive 100 % of the prescribed dose in four of 10 cases owing to artifacts.

Conclusion

The TLE can be compensated by adding an anisotropic margin to the GTV in the reference phase, a critical consideration in DTT.
利用四维计算机断层扫描补偿呼吸引起的肺肿瘤与基准标记物位置不匹配的边缘
背景和目的肿瘤和基准标记物在不同的呼吸期并不总是表现出同步运动,这是一种被称为目标定位误差(TLE)的现象。我们使用四维计算机断层扫描(4D-CT)确定了补偿TLE的裕度。材料与方法对21例肺肿瘤患者的基础标志物进行分析;11个用于TLE测定,10个用于验证。将4D-CT参考期基准标记物的质心与各呼吸期的质心对齐生成移位的CT图像,并确定总肿瘤体积(GTVunionshift)的并度。相反,计算呼吸期GTV质心的变化,并将均方根误差的第95个百分位数定义为TLE。使用这个TLE,在引用阶段生成一个带有附加TLE (GTVTLEref)的GTV。随后,根据计划靶体积建立假设动态肿瘤跟踪(DTT)的治疗方案,通过向gtunionshift添加各向同性5 mm的边界得到治疗方案,并评估gtunionshift的剂量覆盖范围。结果左-右、前-后、上-下三个方向的TLEs(标准差均方根误差)分别为2.0 (0.8)mm、2.1(0.7)mm和3.2 (1.1)mm。剂量学评估显示,由于伪影,GTVunionshift在10例中有4例未获得100%的规定剂量。结论参考相位GTV的各向异性裕度可以补偿TLE,这是DTT的一个重要考虑因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信