{"title":"A multi-task minutiae transformer network for fingerprint recognition of young children","authors":"Manhua Liu , Aitong Liu , Yelin Shi , Shuxin Liu","doi":"10.1016/j.eswa.2025.126825","DOIUrl":null,"url":null,"abstract":"<div><div>Fingerprint recognition of children have attracted increasing attention for real applications such as identity certificate. However, the recognition performance is greatly reduced if the existing systems are directly used on the fingerprints of young children due to their low resolution and poor image quality. Towards more accurate fingerprint recognition of young children, this paper proposes multi-task deep learning framework based on Pyramid Densely-connected U-shaped Swin-transformer network (PDUSwin-Net) to jointly learn the reconstruction of enhanced high-resolution images and detection of minutiae points, which is compatible with existing adult fingerprint sensors (500 dpi) and minutiae matchers. First, a pyramid densely-connected U-shaped convolutional network is proposed to learn the features of fingerprints for multiple tasks. Then, a swin-transformer attention block is added to model the correlations of long-spatial features. In the decoding part, two branches are built for the tasks of fingerprint enhancement and minutiae extraction. Finally, our method is tested with the existing matchers on two independent fingerprint datasets of young children aged from 0–2 years. Results and comparison show that our method performs better than other methods for fingerprint recognition of young children.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"273 ","pages":"Article 126825"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425004476","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Fingerprint recognition of children have attracted increasing attention for real applications such as identity certificate. However, the recognition performance is greatly reduced if the existing systems are directly used on the fingerprints of young children due to their low resolution and poor image quality. Towards more accurate fingerprint recognition of young children, this paper proposes multi-task deep learning framework based on Pyramid Densely-connected U-shaped Swin-transformer network (PDUSwin-Net) to jointly learn the reconstruction of enhanced high-resolution images and detection of minutiae points, which is compatible with existing adult fingerprint sensors (500 dpi) and minutiae matchers. First, a pyramid densely-connected U-shaped convolutional network is proposed to learn the features of fingerprints for multiple tasks. Then, a swin-transformer attention block is added to model the correlations of long-spatial features. In the decoding part, two branches are built for the tasks of fingerprint enhancement and minutiae extraction. Finally, our method is tested with the existing matchers on two independent fingerprint datasets of young children aged from 0–2 years. Results and comparison show that our method performs better than other methods for fingerprint recognition of young children.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.