Yixin Ma , Zeyu Hu , Lin Yang , Lianzheng Zhang , Shanshan Liu , Zhishan Zhang , Dongmei Xu , Jun Gao , Yinglong Wang
{"title":"Extractive distillation separation of isopropanol - isopropyl acetate azeotrope: Vapor-liquid equilibrium measurement and process optimization","authors":"Yixin Ma , Zeyu Hu , Lin Yang , Lianzheng Zhang , Shanshan Liu , Zhishan Zhang , Dongmei Xu , Jun Gao , Yinglong Wang","doi":"10.1016/j.jct.2025.107460","DOIUrl":null,"url":null,"abstract":"<div><div>In industrial production, isopropanol (IPA) and isopropyl acetate (IPAC) serve as raw materials and products for each other. Due to the inability to achieve a 100 % conversion rate of the products, they usually exist as a mixture. However, IPA and IPAC can form a binary azeotropic mixture, making it difficult to separate them through conventional separation methods. In the current work, extractive distillation is being considered for the separation of IPA and IPAC using entrainers such as 4-methyl-2-pentanone (MIBK), chlorobenzene and butyl acetate. The vapor-liquid equilibrium (VLE) data of the binary systems (IPAC + MIBK / chlorobenzene / butyl acetate) at 101.3 kPa were determined, and the results passed the thermodynamic consistency tests (van Ness and pure component). Using three commonly used activity coefficient models (NRTL, UNIQUAC and Wilson) to correlate and regress the data, the results indicate that the vapor phase and temperature deviations are respectively less than 0.0037 and 0.1847 K. Afterwards, suitable entrainer was screened using the binary interaction parameters of regression, and an extractive distillation (ED) process was designed. The products purity reached 99.6 <em>wt</em>%, and the parameters were optimized with the goal of minimizing the bottom heat duty.</div></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"205 ","pages":"Article 107460"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002196142500014X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In industrial production, isopropanol (IPA) and isopropyl acetate (IPAC) serve as raw materials and products for each other. Due to the inability to achieve a 100 % conversion rate of the products, they usually exist as a mixture. However, IPA and IPAC can form a binary azeotropic mixture, making it difficult to separate them through conventional separation methods. In the current work, extractive distillation is being considered for the separation of IPA and IPAC using entrainers such as 4-methyl-2-pentanone (MIBK), chlorobenzene and butyl acetate. The vapor-liquid equilibrium (VLE) data of the binary systems (IPAC + MIBK / chlorobenzene / butyl acetate) at 101.3 kPa were determined, and the results passed the thermodynamic consistency tests (van Ness and pure component). Using three commonly used activity coefficient models (NRTL, UNIQUAC and Wilson) to correlate and regress the data, the results indicate that the vapor phase and temperature deviations are respectively less than 0.0037 and 0.1847 K. Afterwards, suitable entrainer was screened using the binary interaction parameters of regression, and an extractive distillation (ED) process was designed. The products purity reached 99.6 wt%, and the parameters were optimized with the goal of minimizing the bottom heat duty.
期刊介绍:
The Journal of Chemical Thermodynamics exists primarily for dissemination of significant new knowledge in experimental equilibrium thermodynamics and transport properties of chemical systems. The defining attributes of The Journal are the quality and relevance of the papers published.
The Journal publishes work relating to gases, liquids, solids, polymers, mixtures, solutions and interfaces. Studies on systems with variability, such as biological or bio-based materials, gas hydrates, among others, will also be considered provided these are well characterized and reproducible where possible. Experimental methods should be described in sufficient detail to allow critical assessment of the accuracy claimed.
Authors are encouraged to provide physical or chemical interpretations of the results. Articles can contain modelling sections providing representations of data or molecular insights into the properties or transformations studied. Theoretical papers on chemical thermodynamics using molecular theory or modelling are also considered.
The Journal welcomes review articles in the field of chemical thermodynamics but prospective authors should first consult one of the Editors concerning the suitability of the proposed review.
Contributions of a routine nature or reporting on uncharacterised materials are not accepted.